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Abstract

Results from two types of texture-segregation experiments considered jointly demonstrate that the heavily-compressive intensive
nonlinearity acting in static pattern vision is not a relatively early, local gain control like light adaptation in the retina or LGN.
Nor can it be a late, within-channel contrast-gain control. All the results suggest that it is inhibition among channels as in a
normalization network. The normalization pool affects the complex-channel (second-order, non-Fourier) pathway in the same
manner in which it affects the simple-channel (first-order, Fourier) pathway, but it is not yet known whether complex channels’
outputs are part of the normalization pool. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In explanations of perceived texture segregation and
related perceptual phenomena, nonlinearities that occur
at rather low levels of the visual system have proven to
be very powerful. At least two different kinds of nonlin-
earities — one intensi�e in character and one more
intrinsically spatial — have been useful (e.g. Sperling,
1989; Malik & Perona 1990; Graham, Beck & Sutter,
1992; Wilson 1993). The primary aim of the present
paper is to explore further the heavily-compressive in-
tensi�e nonlinearity that has been implicated in a num-
ber of phenomena, particularly texture segregation. We
will show that this intensive nonlinearity is achieved
through a global contrast-gain control like that in a
normalization network. However, understanding this
intensive nonlinearity will require considering its inter-
action with a spatial nonlinearity, so we start here by
briefly introducing this spatial nonlinearity.

1.1. Spatial nonlinearity: complex channels

Complex channels have been proposed as the mecha-
nism for the spatial nonlinearity and are shown as parts
of Figs. 1 and 2. They or similar mechanisms have also
been called ‘non-Fourier mechanisms’ or ‘second-order
units’ or by more specialized terms like ‘collector units’
or ‘collator units’. Complex channels consist of two
layers of filtering — where the first is sensitive to
higher spatial frequencies than the second — with an
intermediate stage consisting of a pointwise nonlinear
function of the rectification type. As a consequence of
this filter–rectification–filter structure, complex chan-
nels respond to low-spatial-frequency patterns of high-
spatial-frequency elements. (A simple channel consists
of a single filtering stage. For further description of
why simple and complex channels respond as they do,
see, e.g. Sutter, Beck & Graham, 1989; Graham, Beck
& Sutter 1992. For a brief review of the various phe-
nomena for which complex channels or similar mecha-
nisms have been proposed, see introduction to Graham
& Sutter, 1998).

One previous finding about complex channels in tex-
ture segregation is critical to our arguments below. The
results of experiments measuring the tradeoff between
the area and contrast of individual elements in element-
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arrangement textures have implications for the point-
wise function at the complex channels’ intermediate
stage. The results suggest that this function is not
piecewise linear (as in conventional full-wave or half-
wave rectification) but (in addition to its rectifying
action) it is quite expansive. By ‘expansive’ we mean
that its output is a positively accelerating function of its
input. It is well described as a power function of the
absolute value of the input, where the power is 3 or 4
(Graham & Sutter, 1998).

1.2. Intensi�e nonlinearity: two candidates

A number of phenomena in perceived texture segre-
gation and related perceptual tasks suggest the exis-
tence of another nonlinear process — one that is highly
compressive (its output is a decelerating function of its
input) and has as its input something closely related to
either light intensity or contrast. Two quite different
candidates have been suggested for this highly compres-
sive process, which we will refer to in general as the
intensive nonlinearity.

1.2.1. Normalization (inter-channel inhibition, global
contrast-gain control)

The first candidate (Fig. 1) is inhibition among the
channels or some other form of contrast-gain control
that depends on a global signal (by which we mean a
signal reflecting a rather wide band of spatial frequen-

cies and orientations, but not necessarily a wide area of
space). The physiological substrate for this might be
intracortical inhibition. In our work we have modeled
such inhibitory interaction by a normalization or
global-gain-control network, influenced by the work of
Bonds (1989, 1993) and Robson (1988a,b) on V1 neu-
rons and specifically by the mathematical models of
Heeger (1991, 1992a,b).

In a normalization network, the response of each
neuron is divided by (is normalized by, has its contrast
gain set by) the total output of a pool of neurons. This
approach may not adequately represent all varieties of
intracortical inhibition and lateral interaction in V1
(Carandini, Heeger & Movshon, 1997; Sengpiel, Badde-
ley, Freeman, Harrad & Blakemore, 1998), but it does
capture many (e.g. Albrecht & Geisler, 1991; Geisler &
Albrecht, 1992; Heeger, 1992a,b; Carandini et al., 1997;
Nestares & Heeger, 1997; Tolhurst & Heeger, 1997a,b)
and is sufficient for our purposes here. This normaliza-
tion has also been proposed in models of higher levels
of the visual cortex, e.g. MT (Heeger, Simoncelli &
Movshon, 1996; Simoncelli & Heeger, 1998). A normal-
ization process may prevent overload on higher levels
and overcome the limitations of a restricted dynamic
range while simultaneously preserving selectivity along
dimensions like orientation and spatial frequency. (See
discussions and references in, e.g. Bonds, 1993; Victor,
Conte & Purpura, 1997; Lennie, 1998). Recently, it has
been suggested that such normalization or contrast-gain

Fig. 1. The normalization model. In this model the compressive effects in texture segregation and related tasks result from inhibitory interaction
among the outputs of spatial-frequency- and orientation-selective channels, as in a contrast-gain-control or normalization network. The early
sensitivity-setting stage shown on the diagram does not introduce any compression for contrasts less than 100%. It does set a sensitivity factor
that depends on mean luminance, spatial frequency, and orientation. It may be thought of as a linear filter for any fixed mean luminance. It also
could be incorporated into the channels themselves. This model is shown here to be consistent both with the results from constant-difference
experiments (here and Graham & Sutter, 1996) and the results from area experiments (Graham & Sutter, 1998).



Fig. 2. The relatively-early-local model. In this model the compressive effects result from an early, local (pointwise) nonlinear function that occurs
before the spatial-frequency- and orientation-selective channels. Note that there is a sensitivity-setting stage that comes before the early-local
nonlinear function. (The early sensitivity-setting stage does not introduce any compression for contrasts less than 100%. It does set a sensitivity
factor that depends on mean luminance, spatial frequency, and orientation.) This relatively-early-local model can explain the results of all our
constant-difference experiments; however, the original form of early-local model (without an early sensitivity-setting stage) cannot (Graham &
Sutter, 1996). We show here that this relatively-early-local model cannot simultaneously explain the results of constant-difference and area
experiments and thus must be rejected.

control has the characteristics needed to help encode
natural images efficiently (Simoncelli & Schwartz, 1998;
Zetzsche, Krieger, Schill & Treutwein, 1998). Many
investigators have invoked inhibition among channels
— sometimes explicitly in a normalization network —
in order to explain behavioral results from texture
segregation and related tasks (e.g. Malik & Perona,
1990; Graham, 1991; Graham et al., 1992; Solomon,
Sperling & Chubb, 1993; Wilson & Humanski, 1993;
Bowen & Wilson, 1994; Foley, 1994; Teo & Heeger,
1994; Smith & Derrington, 1996; Rohaly, Ahumada &
Watson, 1997; Watson & Solomon, 1997; Wilkinson,
Wilson & Ellemberg, 1997; Foley & Schwarz, 1998;
Olzak & Thomas 1998; Snowden & Hammett,
1998.)

The sensitivity-setting stage in Fig. 1 resets sensitivity
as a function of the spatial frequency, orientation and
mean luminance. However, on a constant mean lumi-
nance, it does not introduce any nonlinearity for con-
trasts below 100% and thus, in these conditions, may be
approximated by a linear spatial filter. It incorporates
at least the lens of the eye as well as some
spatial filtering and light adaptation in the retina and
LGN.

All the results reported below will turn out to be
consistent with a normalization network in conjunction
with complex channels (having an expansive rectifying
function at the intermediate stage) and simple channels
(Fig. 1).

1.2.2. Early local nonlinear function
The second candidate (Fig. 2) for the intensive non-

linearity is an early local nonlinear function. By ‘early’
we mean ‘before the channels’, and thus it could occur
either at the retina or at the LGN, perhaps as a result
of processes whose primary purpose is to adapt to the
light level (for a recent review of retinal light adapta-
tion see Hood, 1998) or as a result of an early contrast-
gain control (e.g. Shapley & Victor, 1978, 1979, 1981;
Bernardete, Kaplan & Knight, 1992). By ‘local’ we
mean pointwise, or, more exactly, ‘dependent on an
area very small relative to the receptive fields character-
izing the channels’.

In a strong form of the early-local hypothesis, a
nonlinear function is applied directly to each point of
the stimulus. This function is compressive both for
decrements and increments from the mean luminance,
and its output is the input to the spatial-frequency and
orientation-selective channels. This strong form of the
early-local model was ruled out by the results of chang-
ing the scale of the texture patterns (Graham & Sutter,
1996).

However, the modified form that is shown in Fig. 2
could not be ruled out. In this modified form, the
relati�ely-early-local model, the pointwise compressive
function occurs after a sensitivity-setting stage (like that
in the normalization model) but before the spatial-fre-
quency and orientation-selective channels.



On first consideration, it might seem that any local
process could be ruled out by previous results showing
that judgments depending on single separated texture
elements are apparently much less compressive than
judgments about regions involving exactly the same
elements (Beck, Graham & Sutter, 1991). But, as dis-
cussed further in Graham and Sutter (1996), there is a
possible alternative interpretation of these results, and
they do not rule out the relatively-early-local model.

One of the main conclusions from the studies below
will be to rule out definitively even the relati�ely-early-
local model of the intensive nonlinearity in texture
segregation.

1.3. This study

This paper presents some new results of constant-dif-
ference experiments and compares these results (as well

as some previously-published results from another kind
of experiment) to predictions from the models described
above. Constant-difference experiments were introduced
in Graham (1991) and Graham et al. (1992) and have
been very useful in investigating both the spatial and
the intensive nonlinear processes. The experiments here
use element-arrangement patterns, some examples of
which are shown in Figs. 3 and 4. In element-arrange-
ment patterns, there are two types of elements, and the
two texture regions differ in how these elements are
arranged (striped in the side regions and checkerboard
in the center region in Figs. 3 and 4). In each stimulus
used here, the two kinds of elements were identical in
everything except in contrast.

Square-element textures like those in panel (a) and
panel (b) of Fig. 3, where the squares and between-
square spaces are the same size, should be processed
primarily by simple channels (Graham, 1991; Graham

Fig. 3. Three examples of element-arrangement texture stimuli composed of square elements. Each stimulus contains three regions composed of
the same two element types but distinguished by the arrangement of the elements: striped in the side regions and checkerboard in the middle
region. Panel (a) shows a large/regular pattern, panel (b) a small/regular pattern, and panel (c) a small/sparse pattern. These are all
opposite-sign-of-contrast stimuli (contrast-ratio angle of 0°).



Fig. 4. Three examples of the element-arrangement texture stimuli composed of grating-patch elements: opposite-sign-of-contrast (panel (a)),
one-element-only (panel (b)), same-sign-of-contrast (panel (c)). This figure shows the lower spatial-frequency grating elements used in this study
(3 c/deg as viewed by the observers). The higher-spatial-frequency grating elements (12 c/deg) were characterized by a period one-fourth that
shown here, so they had four times as many cycles per element, but the patterns were otherwise identical to these (the element’s window size and
the spacing of the elements were the same). The stimuli in this figure were supposed to be from the same constant-difference series but reproduction
will have distorted them.

et al., 1992; Graham & Sutter, 1996). We will refer to
these as regularly-spaced square-element patterns, and
most of our previous constant-difference experiments
have used textures like these. Another kind of square-
element pattern is also used here (panel (c) of Fig. 3): a
sparse pattern in which the spaces between the squares
are much larger than the squares. As will be shown
here, complex channels may be more sensitive than
simple channels to sparse patterns of square elements
even though simple channels can in principle segregate
them.

Here we also report extensive constant-difference ex-
periments using grating-patch element-arrangement
patterns, examples of which are shown in Fig. 4. Again

the two element types in a given stimulus are identical
except for contrast. Note that, for grating-patch ele-
ments switching from negative to positive contrast is
equivalent to a 180° phase shift. These grating-patch
element-arrangement stimuli cannot be segregated by
simple channels because there is little or no energy at
the frequency/orientation combinations which distin-
guish the checkerboard from the striped regions. Hence,
within this framework they must be processed by com-
plex channels.

For both grating-patch-element and square-element
textures, this paper reports experiments over a wide
contrast range including both lower and higher con-
trasts than in previous experiments.



Importantly, the constant-difference experiments here
include conditions allowing their results to be directly
compared to results of area experiments. In the area
experiments the tradeoff between the area and the
contrast of elements was measured for both grating-
patch-element and square-element textures (Graham &
Sutter, 1998). We were also able to use many of the
same observers here, and we ran both types of experi-
ments with both square-element and grating-patch-ele-
ment textures on a new observer as well, thus
permitting a very secure comparison.

The results of this study allow us to distinguish
definitively between the normalization and relatively-
early-local models of the intensive nonlinearity. As
described below, the normalization predictions are con-
sistent with all the results of both constant-difference
and area experiments, but the predictions of the rela-
tively-early-local model are dramatically wrong.

2. Methods and procedures

2.1. About constant-difference series and contrast-ratio
angles

In a constant-difference series of patterns — dia-
grammed in Fig. 5 — the difference between the con-
trasts of the two element types in a pattern remains
fixed (as do their spatial characteristics), but the con-
trasts of both element types vary together. Each con-
stant-difference experiment investigates a number of
constant-difference series of the same pattern. (We use
the word ‘pattern’ here to mean a particular spatial
arrangement and a particular background luminance
without commitment to the contrast of the elements).

More precisely, each constant-difference experiment
uses all distinct combinations of evenly-spaced contrast
levels in the two element types of some pattern, as

Fig. 5. Diagram illustrating two constant-difference series. Each of the five small diagrams in the top (or bottom) row shows a sketch of the
luminance profile of the two element types in a square-element (or grating-element) stimulus like those in Fig. 3 (or 4). The five stimuli in each
row are all in the same constant-difference series : in particular, the difference between the luminances (or equivalently in these cases, the contrasts)
of the two element types is the same, as indicated by the small vertical bars. The contrast of the grating patch is arbitrarily taken to be negative
when the bar to the left of center is dark and positive when it is bright. The sketches here show each element as containing only one cycle of
sine-wave, but in the experiment each element contained more. The contrast-ratio angle labeling the bottom of the figure is a convenient measure
for keeping track of the members of a series and is illustrated further in the next figure.



Fig. 6. Diagram of the full set of stimuli used for each constant-differ-
ence experiment. The contrast of one element type is plotted on the
horizontal axis and that of the other element type on the vertical axis.
(The contrasts are in arbitrary steps. For the value of the step in each
experiment, see text.) The ratio of the contrasts of the two element
types is constant along lines through the origin. The corresponding
contrast-ratio angle is labeled outside the diagram. The stimuli along
each positive oblique line form a constant-difference series. Each
experiment with square-element textures consisted of the 66 stimuli as
shown here — that is, with �5 steps of contrast (producing 11
different contrast levels). Each experiment with grating-element tex-
tures consisted of 91 stimuli formed by using �6 contrast steps
(producing 13 different contrast levels) There were 11 different series
in each square-element experiment (corresponding to the 11 diagonal
lines of positive slope in the diagram here) and 13 different series in
each grating-element experiment. Note that each constant-difference
series contains one stimulus less than the series below it (the series for
the next lower difference); the series for the largest difference contains
only one stimulus.

tom labels in Fig. 5 and the left and top labels of Fig.
6. (All stimuli on a line through the origin in Fig. 6
have the same ratio of contrasts in their two elements.
Such a line can be represented by its angle, which we
measure relative to the negative diagonal.) At a con-
trast-ratio angle of zero, the elements have opposite-
but-equal contrasts. Square-element opposite-sign-of-
contrast stimuli are shown in all three panels of Fig. 3.
In the case of grating-patch elements, elements of oppo-
site contrast are 180° out of phase (e.g. panel (a) of Fig.
4). Angles within 45° of zero characterize stimuli in
which the two element types are of opposite sign of
contrast but potentially different magnitudes of con-
trast. Angles equal to +45 or −45° characterize stim-
uli in which the contrast of one element type has been
reduced to zero, so only the other element type is visible
(e.g. panel (b) of Fig. 4). Angles greater than 45° in
magnitude characterize stimuli in which the two ele-
ment types have the same sign of contrast (same phase
for grating-patch elements) although generally different
magnitude (e.g. panel (c) of Fig. 4).

2.2. O�er�iew of constant-difference experiments

With square elements, nine experiments were done
for each of six observers. Results from the nine experi-
ments with square elements will be shown in Figs. 8
and 9 for two individual observers. The nine experi-
ments resulted from combinations of three square size/
spacing conditions (illustrated in Fig. 3 and described
below — corresponding to the three rows in Figs. 8
and 9) with three contrast ranges (step sizes of 1.33, 4
and 12% contrast — corresponding to the three
columns in Figs. 8 and 9). Trials from the nine square-
element experiments for a given observer were ran-
domly intermixed. Each session consisted of one trial of
each stimulus in each experiment. Four sessions were
run for each observer. Different sessions were usually
run on different days.

With grating-patch elements, six experiments were
done for each of four observers. Results from the six
experiments with grating-patch elements will be shown
in Figs. 10 and 11 for two individual observers. The six
experiments resulted from combinations of two spatial
frequencies in the Gabor patches (3 c/deg and 12 c/deg
— corresponding to the two rows in Figs. 10 and 11)
with three contrast ranges (corresponding to the three
columns in Figs. 10 and 11). The three contrast ranges
were determined by a step size of 1.33, 4 and 12%
contrast for three of the four observers. For subject
CV, who was run first, the three contrast ranges for 3
c/deg patches were determined by a step size of 1.33,
2.67 and 3% contrast, while those for 12 c/deg patches
were determined by a step size of 5.33, 10.57 and 16%
contrast. Trials from the six grating-element experi-

diagrammed in Fig. 6. In each of the square-element
experiments there are 11 levels of contrast (as shown in
Fig. 6), and in each of the grating-element experiments,
there are 13 levels. The 11 (or 13) levels include zero,
and are evenly-spaced and symmetric around zero. This
produces 66 (or 91) different stimuli in an experiment.
The contrast range is determined from the magnitude
of the minimal non-zero contrast, (a ‘step’ in Fig. 6);
the maximal positive contrast is five times the step size
for square-element experiments (and six times for grat-
ing-element experiments).

Stimuli along any positive diagonal in Fig. 6 form a
constant-difference-series. Thus, each square-element
constant-difference experiment reported here contains
11 series (as illustrated by the positive diagonals in Fig.
6), and each grating-element experiment contains 13
series.

It is useful to characterize each stimulus by its con-
trast-ratio angle. This measure is specified in the bot-



ments for a given observer were randomly intermixed.
Each session consisted of one trial of each stimulus in
each experiment. Four sessions were run for each ob-
server. Different sessions were usually run on different
days.

2.2.1. More details of square-element stimuli
The number, spacing, and arrangements of square

elements are shown in Fig. 3.
The width of a square element was 0.33° (16 pixels at

the viewing distance of 0.91 m) or 0.08° (4 pixels). For
the large (0.33°) squares, the center-to-center spacing
between neighboring elements was 0.67° (32 pixels),
which is the same center-to-center spacing used for the
grating-patch element patterns. This produces a pattern
in which large squares were separated by equally large
spaces (that is, a duty cycle of 0.5). We refer to these
patterns as large/regular patterns; the opposite-sign-of-
contrast case is illustrated in panel (a) of Fig. 3. Notice
that the repetition period (within a given region) was
two rows and two columns of elements and inter-ele-
ment spaces (1.33×1.33° or 64×64 pixels). Thus, for
these large squares, the fundamental frequency (the
reciprocal of the repetition period) of either the check-
erboard or the striped region was 0.75 c/deg both
horizontally and vertically.

For the small 0.08° squares, there were two spacing
conditions. One was a center-to-center spacing of 0.16°,
leading to a pattern in which small squares were sepa-
rated by equal-width small spaces, that is, a duty cycle
of 0.5. This corresponded to a fundamental frequency
of 3 c/deg in both horizontal and vertical directions.
We will refer to these patterns as small/regular patterns;
the opposite-sign-of-contrast case is illustrated in Fig. 3
panel (b).

The second spacing condition for the small 0.08°
squares was a center-to-center spacing of 0.67° (which
is the spacing used with the bigger squares), producing
a pattern in which small squares were separated by
much bigger spaces for a duty cycle of 1/8, or, in other
words, where the density of squares was lower than in
the regular cases. The fundamental frequency of these
patterns was 0.75 c/deg as in the large/regular patterns.
We refer to these patterns as small/sparse patterns; the
opposite-sign-of-contrast case is illustrated in Fig. 3
panel (c).

The square-element patterns can be segregated by
simple linear channels tuned to the fundamental fre-
quency (0.75 c/deg for large/regular and small/sparse,
and 3 c/deg for small/regular patterns). They could also
in principle be segregated by complex channels with
first-stage filters tuned to high spatial frequencies
(present in, e.g. the edges of the squares) and second-
stage filters tuned to the fundamental frequency if these
complex channels are sensitive enough. On the basis of
previous experiments done with regular spacing, one

expects these patterns to be segregated primarily by
simple channels although with some minor complex-
channel contribution. The question of which channels
segregate the sparse-spacing condition is investigated
here.

2.2.1.1. Relationship to stimuli from pre�ious area exper-
iments. The large/regular and small/regular patterns
used here are just like the 0.33 and 0.08° square pat-
terns used in constant-difference experiments by Gra-
ham and Sutter (1996). Also, the large/regular and
small/sparse patterns here have elements spaced like
those in the square-element area experiments of Gra-
ham and Sutter (1998) and the sizes of the square
elements here correspond, respectively, to the 0.33 and
0.08° square elements in those area experiments.

2.2.2. More details of grating-patch-element stimuli
The number and arrangements of elements were

identical to that for square elements and are shown in
Fig. 4.

The width of a Gabor-patch element (full width at
half peak) was always 16 pixels (0.33°). The harmonic
oscillation was in sine phase with respect to the win-
dow. The orientations of all the Gabor patches were
vertical. Their spatial frequency was either 3 c/deg (a
period of 16 pixels) or 12 c/deg (a period of 4 pixels).

The center-to-center spacing between neighboring el-
ements was 32 pixels (0.67° at the viewing distance of
0.91 m). The repetition period (within a given region)
was two rows and two columns of elements and was
1.33×1.33° (64×64 pixels). Thus the fundamental fre-
quency (the reciprocal of the repetition period) of either
the checkerboard or the striped region was 0.75 c/deg
both horizontally and vertically.

These grating-patch-element patterns cannot be segre-
gated by a model containing only simple (linear) chan-
nels. Although some linear filters do respond differently
to the checkerboard versus striped arrangements, the
magnitude of these differences (as processed by any of
the broad family of decision and pooling stages we
consider in our models) is extremely small. Indeed, the
predictions for grating-element patterns from a model
composed only of simple channels (plus our usual
decision and comparison stage) are very much like
those that we have previously published for center-sur-
round element patterns (Graham et al., 1992, Fig. 7).

These grating-patch-element patterns can, however,
be segregated by complex channels, in particular by the
complex channels with first-stage filters tuned to 3 or 12
c/deg (corresponding to the spatial frequency of the
patches) and second-stage filter tuned to 0.75 c/deg (the
fundamental frequency).

2.2.2.1. Relationship to stimuli from pre�ious area exper-
iments. The 12 c/deg grating-element patterns used here



correspond to patterns used in the grating-element area
experiments of Graham and Sutter (1998), in particular,
to those with the largest grating-patch elements.

2.2.3. Details in common for all experiments
The mean luminance was 18 ft-L.
The observer initiated a trial by pushing a key. The

patterns were presented for 1 s, with abrupt onsets and
offsets. After stimulus offset, a 1-s delay occurred and
then a beep signaled the observer to make a response. The
observer’s response was a rating of the degree to
which the three regions in the patterns perceptually
segregated.

Viewing was binocular at a distance of 0.91 m.
(Further details can be found in Graham & Sutter

1996, 1998).

2.2.4. Obser�ers
There were six observers in the square-element exper-

iments reported here. Four of these also ran in the
grating-element experiments. All of them were between
17 and 35 years of age and had normal or corrected-to-
normal acuity.

2.3. Calculating model predictions and fitting the
experimental results

In this study we approximate models’ predictions by
simple equations, as we have done in some of our earlier
papers. Appendix A here summarizes these equations
from previous papers. These equations treat each element
type as an entity and perform simple algebra on element
types (rather than explicitly calculating the spatial filter-
ings and other transformations at each stage in the
model). Partly as a consequence of the physical separa-
tion of the elements in our patterns, the rather simple
equations are a very good approximation to the results
of the full model. (Earlier papers have shown some
examples of predictions from the full model and also
some comparisons of these full predictions to predictions
from approximate equations: Sutter et al., 1989; Gra-
ham, 1991; Graham et al., 1992). Not only does this
approximate-equations approach make the computa-
tional task substantially easier but also, importantly, the
simplicity of the equations makes it easier to see why the
models make the predictions they do.

This approximate-equations approach does, of course,
introduce approximations that then need to be carefully
considered for possible import. There are two separate
types of approximation inherent in this approach. First,
in our equations we frequently concentrate only on the
‘tuned’ channel or channels (those most able to segregate
the patterns under consideration). There are undoubtedly
less-well-tuned channels also, and consideration of these
less-well-tuned channels could introduce subtleties like
those discussed at length for area experiments in Graham
and Sutter (1998). However, calculations exploring the
possible intrusions in the experiments here (predictions
from model versions containing realistic less-well-
tuned channels) suggest that they play only a minor role
here and introduce no serious artifacts into the conclu-
sions. (Indeed, the intrusion of these other channels
seems to be less of a problem in constant-difference
experiments, where the elements in any one stimulus are
all the same size, than in the area experiments.) Secondly,
but of lesser possible significance in these experiments,
the approximate-equations approach neglects extra
frequencies and orientations introduced into the process-
ing by the pointwise nonlinearities (i.e. the early, local

Fig. 7. Schematic illustration showing how results from constant-dif-
ference experiments can be related to the underlying model processes.
The vertical axis shows segregation, either predicted or measured.
The horizontal axis shows contrast-ratio angle. The vertical dotted
lines at �45° mark the one-element-only patterns in the constant-dif-
ference series. Each curve represents the results from a constant-dif-
ference series of stimuli. Gray shading covers regions that are not
particularly informative about the issue in question. As shown in the
top row, points in the middle of the curves (opposite-sign-of-contrast
stimuli, having contrast-ratio angles between +45 and −45°) are
most useful in telling whether simple or complex channels or both are
segregating the patterns. As shown in the bottom row, points at the
ends of the curves (same-sign-of-contrast stimuli, having contrast-ra-
tio angles � −45 or � +45°) are most useful in distinguishing
between compressive and expansive nonlinearities. Such expansive or
compressive nonlinearities may occur at several places in the model,
in particular, at the intermediate stage of the complex channels or as
an early-local nonlinear function, or as the result of a normalization
network. (In the bottom panels, each curve extends over a slightly
narrower range of contrast-ratio angles than the curve below it
because, in our experiments, each series extended over a narrower
range of contrast-ratio-angles than series characterized by lower
differences).



function and the function at the intermediate stage of the
complex channels).

The conclusions stated below are based on calculating
predictions from many versions of the relatively-early-lo-
cal and normalization models. We varied the properties
of the normalization network, and/or the relatively-
early-local nonlinearity, and we also varied the exponent
on the function at the intermediate stage of the complex
channel. We also did one large set of quantitative fits of
models to the results of these experiments, analogous to
those reported in Graham and Sutter (1996). See Ap-
pendix C for more information.

3. Results and discussion

Experimental results and model predictions for the
constant-difference experiments will be plotted in a form
which is useful for distinguishing among models. This
form is illustrated in each panel of Fig. 7. The horizontal
axis shows the contrast-ratio angle. The vertical axis
shows segregation — either measured or predicted. (The
observer’s ratings of perceived segregation will not, in
general, be directly proportional to predicted segrega-
tion, but the two are assumed to be related by some
monotonic transformation, as illustrated in Fig. 16 of
Graham et al., 1992.) Each curve in these plots connects
results for the stimuli from one constant-difference
series. Fig. 7 shows several possible characteristics of
results plotted in this form and how they correspond to
underlying processes in the models. Although both the
spatial and intensive nonlinearity can affect all parts of
a constant-difference curve, the magnitude of their ef-
fects is different in different places along the curves, and
thus it is useful to divide the curves in the plots into
middles (see top panels Fig. 7) and ends (see bottom
panels Fig. 7) and consider what results in each region
correspond to what processes in the models. Since
previous papers have described these effects in detail, we
just briefly survey them here.

As indicated in the top row of Fig. 7, the middle region
of the curves (opposite-sign-of-contrast stimuli, contrast-
ratio-angles between −45 and +45°) is particularly
useful for deciding whether simple channels or complex
channels (or both) are segregating the patterns. Simple
channels lead to flat curves since all stimuli in the same
constant-difference-series are approximately equally seg-
regatable by simple channels. (See Fig. 7 of Graham et
al., 1992, for a demonstration of this.) However, complex
channels lead to a dramatic dip in segregatability at the
opposite-but-equal case because the second stage of the
complex channels cannot tell the difference between
equal-but-opposite elements once they have passed
through the first stage and the rectification-type function
at the intermediate stage. (This is illustrated for square
elements in Fig. 11 of Graham et al., 1992; an analogous

illustration could be drawn for grating elements).
As indicated in the bottom row of Fig. 7, the ends of

the curves (same-sign-of-contrast patterns, contrast-ra-
tio-angles less than −45° or greater than +45°), are
useful for deciding whether there are expansive or
compressive nonlinearities acting in the system. Up-
turned ends of the curves indicate expansion; conversely,
downturned ends indicate compression. With simple
channels and with complex channels having a piecewise-
linear function (e.g. conventional full-wave or half-wave
rectification) at the intermediate stage, the ends of the
curves directly reflect the nature of the intensive nonlin-
earity in the models. Indeed it was the typical downturn
in experimental results that initially led us to posit a
compressive intensive nonlinearity. But, as we discuss
below, the ends of the curves may also reflect the
intermediate stage in complex channels.

Figs. 8 and 9 show the full results for two observers
from the nine constant-difference experiments with
square elements. Figs. 10 and 11 show the full results for
those same two observers from the six constant-differ-
ence experiments with grating elements. In all four
figures, the three columns show the results from the three
different contrast ranges. The three rows in Figs. 8 and
9 correspond to the three kinds of square-element pat-
terns (different sizes and spacings of squares). The two
rows in Figs. 10 and 11 correspond to the two spatial
frequencies of grating-patch elements. Each data point
shows the results for one stimulus. These two observers’
results look generally similar, although they differ some-
what from each other. These two observers together are
quite representative of the results from the other observ-
ers not shown here. We will discuss these results at some
length in the next several subsections.

3.1. Which patterns are segregated by simple channels,
and which by complex channels?

First note that the middle regions of the curves in Figs.
8–11 are consistent with the suppositions we have made
before that: (i) the grating-patch element patterns are
segregated by complex channels while; (ii) the
regularly-spaced square-element patterns are primarily
segregated by simple channels (although with some
complex-channel intrusion). There is a new and
different result here, however, for the sparsely-spaced
square-element patterns. These patterns show a much
greater amount of complex-channel intrusion than do
regularly-spaced squares. In fact, for three of the six
observers (WS, who is shown here in Fig. 9, CAS and
CH), perceived segregation descends to zero for equal
but opposite contrasts, thus producing plots with a
double-peaked appearance just like that for the grating-
patch element results (e.g. Figs. 10 and 11). This double-
peaked appearance is the result expected if complex
channels are very heavily involved in the segregation of



Fig. 8. Results from the square-element constant-difference experiments for one observer (JH). Experiments were done with three kinds of
square-element patterns (three rows) and for three contrast ranges (three columns). In each panel, perceived segregation is plotted on the vertical
axis as a function of contrast-ratio-angle on the horizontal axis. The vertical dotted lines mark the one-element-only patterns in the
constant-difference series. Each point represents one of the 66 stimuli studied in an experiment and shows the segregation rating averaged over
four presentations of that stimulus done in four separate sessions. The lines connect stimuli in a particular constant-difference series.

Fig. 9. Results from observer WS for square-element patterns in same format as Fig. 8.



these sparse-spacing patterns. Such heavy involvement
is perfectly plausible as the ratio of complex-to-simple
channel sensitivity should increase substantially as one
goes from regular to sparse spacing (see Appendix B for
more explanation). To look at the matter from a differ-
ent perspective, as small elements get further apart (a
comparison of small-regular versus small-sparse) com-
plex channels will generally become better suited than
simple channels for tying those elements together into
larger patterns. Substantial individual differences in the
amount of complex channel are seen in these results as
they were in the area experiments (Graham & Sutter,
1998) and may be due to the same cause: individual
differences in the sensitivities of certain complex and
simple channels.

3.2. Failure of the early-local model

Now note that the ends of the measured constant-dif-
ference curves (same-sign-of-contrast patterns) turn
down in almost all cases This downturn is seen clearly
in all the panels of Figs. 8–11 except for the lower left
panels. The lower left panels sometimes even show an
upturn (which is particularly clear in the lower left
panels of Figs. 8 and 11). This upturn at very low
contrasts for certain stimuli will be discussed later when
it can be interpreted in the light of conclusions from the
other results.

A compressive early local model — either of the
original strong or the modified relative form — easily

Fig. 10. Results from grating-patch-element constant-difference experiments for one observer (JH). Experiments were done with two different
grating-patch spatial frequencies (two rows) and three different ranges of contrast (three columns). Format of the individual panels is like that in
Figs. 8 and 9. Each point represents one of the 91 stimuli studied in an experiment and shows the segregation rating averaged over four
presentations of that stimulus done in four separate sessions.

Fig. 11. Results from observer WS for grating-patch element experiments in same format as Fig. 10.



accounts for the decreased segregatability toward the
ends of the curves in constant-difference results. This
decreased segregatability occurs because the compres-
sive early-local nonlinear function is centered at the
background luminance (like that shown in Fig. 2), thus
protecting discriminability among luminances near the
background luminance while sacrificing discriminability
further away. A diagram illustrating this logic can be
found in Fig. 18.8 of Graham (1991) or Fig. 15 of
Graham et al. (1992).

However, as discussed next, the early-local model
(either of the original or modified form) can not predict
simultaneously both the constant-difference and the
area results.

3.2.1. Prediction of the early-local model
The early-local model, either of the original or the

modified form (Fig. 2), turns out to make a strong
prediction for the effects of area experiments and con-
stant-difference experiments considered together,
namely:

If compression (or, respecti�ely, expansion) shows up
in the results of one of these kinds of experiments, then
compression (or, respecti�ely, expansion) must also
show up in the results of the other kind of experiment
(when using the same patterns, at the same contrasts,
with the same obser�ers).

(For a description of how compression and expansion
show up in the results of area experiments, see Graham
& Sutter, 1998).

To provide some insight into this prediction of the
early-local model, let’s go through the case of simple
and complex channels separately.

3.2.1.1. Simple channels. Consider the relatively-early-
local model of Fig. 2 and consider the case of regularly-
spaced square-element patterns, which are processed
primarily by simple channels. In this case the degree of
compression or expansion in both types of experiments
will be determined by the relatively early, local nonlin-
ear function itself (see Fig. 2 and r in Eqs. (4) and (5)
of Appendix A). There are no other processes in the
model which can introduce compression or expansion
in the simple-channel pathway in these experiments.
(The sensitivity-setting stage is linear for all patterns at
a given mean luminance, that is, it does not introduce
either compression or expansion for the patterns used
in any one of these experiments; and the comparison
and decision rule stage does not introduce compression
or expansion either.) Since the relatively-early-local
nonlinear function remains the same in both kinds of
experiments, both kinds should show compression or
both should show expansion. (The original form of the
model is like Fig. 2 but missing the early sensitivity-set-
ting stage, so the prediction holds for it as well).

3.2.1.2. Complex channels. Consider the relatively-early-
local model of Fig. 2 and the case of grating-patch
elements which are processed by complex channels.
Here the degree of compression or expansion will be
determined by the combined effects of the relatively
early, local nonlinear function and the pointwise func-
tion at the complex channels’ intermediate stage. While
there is linear spatial filtering before and between those
two pointwise nonlinearities, they act in this regard
approximately as a single concatenated function. For
example, if the relatively-early-local function were a
(compressive) power function with an exponent of 0.5
and the function at the intermediate stage of the com-
plex channels were an (expansive) function with an
exponent of 3, then overall the experimental results
would look expansive with an exponent of about 3×
0.5=1.5. And this would be true for both area experi-
ments and constant-difference experiments.

3.2.2. The prediction does not agree with the
experimental results

To help in considering the results from these two
kinds of experiments simultaneously, we fit the rela-
tively-early-local model to the results of the constant-
difference experiments reported here in order to find the
relatively-early-local function which produced the best
fit of the model to the results. The intermediate func-
tion in the complex channels used in these fits was
assumed to be piecewise-linear so that all the compres-
sion or expansion would show up in the relatively-
early-local function itself. The open circles joined by
solid lines in Figs. 12 and 13 show the best-fitting
relatively-early-local functions obtained for some of the
experimental results. (In terms of the equations, these
figures plot the best-fitting value of r(S1 · C1) as a
function of C1, see Eqs. (7) and (8) of Appendix A.)
Fig. 12 shows the functions for the large/regular
square-element results for all six observers. These pat-
terns were identical to the largest-element patterns in
the square-element area experiments (Graham & Sutter,
1998). Fig. 13 shows the functions for the 12 c/deg
grating-patch elements for all four observers. These
patterns were identical to the largest-element patterns in
the grating-element area experiments (Graham & Sut-
ter, 1998). Remember that all the other experimental
conditions, as well as the observers, were the same in
the constant-difference and area experiments. The fits
for the three different contrast ranges for each observer
are pinned at the points of overlap and the highest
output set equal to 100. Only the positive half of the
function is shown as it was assumed to be anti-symmet-
ric in these fits. (See Graham & Sutter 1996 and Ap-
pendix C here for more details of these fits.)

The straight oblique lines in Figs. 12 and 13 are
plotted for comparison purposes; the solid and dashed
oblique lines have slopes of 1.0 and 0.5, respectively,



Fig. 12. The best-fitting relatively-early-local function r for square-el-
ement patterns for each of the six observers. The points in each panel
show the function r for an individual observer that leads to the best
fit of the relatively-early-local model to the square-element constant-
difference results. (In terms of the equations, this figure plots the
best-fitting value of r(S1 · C1) in Eqs. (7) and (8) of the appendix as
a function of C1.) The fits for the three different contrast ranges for
each observer are pinned at the points of overlap and the highest
output set equal to 100. The straight oblique lines are plotted for
comparison purposes; the solid and dashed oblique lines have slopes
of 1.0 and 0.5, respectively, showing a linear function and a power
function with power 0.5. The vertical dotted lines show the contrast
range from the area experiments run with the same stimuli in the
same conditions and for the same observers (Graham & Sutter, 1998,
except that CAS was run later.) Between the vertical lines the
best-fitting early-local function is approximately parallel to the
dashed oblique line and thus well described as a power function with
a power of 0.5.

described as a power-function with a power of 0.5
(which is compressive and very close to a logarithmic
function in fact). That is, the results from constant-dif-
ference experiments show compression within the
ranges of contrasts used in the area experiments. The
area experiments do not show compression within this
same range. The area experiments with grating-patch
elements show considerable expansion (as in a power
function with an exponent of 3 or 4 typically). The area
experiments with square elements show approximate
linearity (where deviations from linearity are, if any-
thing, toward expansion rather than compression). This
is true for all observers in the area experiments. (Five of
the observers used here are published in Graham &
Sutter, 1998. Observer CAS here was run in the area
experiments later and showed at least as much expan-
sion as the published observers.)

Since (for the same range of contrasts, conditions,
etc.) one experiment shows compression and the other
shows expansion or linearity, the early-local model (of
either form) cannot simultaneously predict the results
from both constant-difference and area experiments.
Thus, the early-local model of either form can be
rejected as an explanation for these texture-segregation
experiments.

Fig. 13. The best-fitting relatively-early-local function r for grating-el-
ement patterns for each of the 4 observers. Figure in the same format
as Fig. 12. Again the vertical dotted lines show the contrast range
from the corresponding area experiments. Between those lines the
best-fitting early-local function is approximately parallel to the
dashed oblique line and thus well described as a power function with
a power of 0.5.

showing a linear function and a power function with
power 0.5. The dotted vertical lines in Figs. 12 and 13
indicate the operative contrast ranges from the area
experiments for the same stimuli. In particular, they
indicate the range of contrasts over which minima in
the segregation curves were measured, and it is these
minima that indicate expansiveness or compressiveness
(as explained in Graham & Sutter, 1998). Note that,
between these vertical lines, the best-fitting relatively-
early-local functions in Figs. 12 and 13 are approxi-
mately parallel to the dashed oblique line and thus well



Fig. 14. Predicted segregation for constant-difference experiments when the function at the intermediate stage of the complex-channel is either
piecewise linear, km=1 (top row) or expansive with an exponent km=3 (bottom row). The left column represents the case of no normalization
(and is also the case at �ery low contrasts even if there is normalization in the model). The middle column is for contrasts low enough that the
compressive effect of the normalization is still moderate. The right column is for high contrasts. The difference between the three columns was
achieved by having � in Eq. (17) of Appendix A change from very high (1000, to produce linear behavior on the left) to moderate (9, in middle
column), to very small (1, in right column) while keeping the contrast values fixed (in arbitrary units) at values of �1, 2, …6. The values of the
sensitivity parameters were: wS=0, wX=1,wOS=wOX=4. For further information see Appendix C. The predicted segregation was arbitrarily
rescaled to reach a maximum of 1.0 in each panel. An observer’s ratings are assumed to be a monotonic transformation of the predicted value
of plotted on the vertical axis.

3.3. Successes of a normalization model

3.3.1. High-contrast compressi�eness in
constant-difference experiments

According to a normalization model, the decreased
segregatability for same-sign-of-contrast patterns in
constant-difference experiments at high contrasts (right
panels Figs. 8–11, ends of curves) is easy to explain.
Once the contrast is high enough to bring normaliza-
tion into play, then, as one moves toward either end of
a constant-difference series, there is increased inhibition
from channels in the normalization pool (but at all
points in the series there is approximately constant
excitation from channels able to segregate the texture).
See Appendix B or Graham et al., 1992 for more
explanation. Quantitative fits of the normalization
model to the constant-difference results (done in the
same way as the fits previously reported by
Graham & Sutter, 1996) show that the predictions of
the normalization model are an excellent description of
the results not only from square elements, as we previ-
ously showed, but also from grating elements at
middle to high contrasts. These quantitative fits lead to
conclusions essentially analogous to those reported in
our earlier paper for square elements and are not
repeated here consequently. Note that this con-

cordance means that the normalization network is act-
ing in the same manner on both simple and complex
channels.

Some typical quantitative predictions from the nor-
malization model for constant-difference experiments
with grating elements are shown in Fig. 14. The top
three panels are from a complex channel with a piece-
wise-linear function at the intermediate stage (km=1 in
Eq. (2) of Appendix A). The bottom row is for a
complex channel with an expansive nonlinearity (km=
3). The rightmost panels are predictions with normal-
ization for a middle- to high-contrast range. (We will
discuss the left and middle panels later.) Both for
piecewise-linear (top right) and expansive (bottom
right) complex channels, the predicted segregation at
the ends of the curves goes down, and, in fact, the ends
of the different curves juxtapose as in typical empirical
results for middle to high contrasts.

The downturn at the ends of the curves is predicted
even for the expansive complex-channels case(bottom
row, right panel) because the compressiveness in the
normalization network overwhelms the expansiveness
at the intermediate stage of the complex channel. (The
curves for the piecewise-linear and expansive complex
channels seem to have rather different shapes. But,



since a monotonic function intervenes between the pre-
dictions and the data, a shape difference of this sort is
not a stable feature of the predictions and would not be
discriminable in the data). Juxtaposition is predicted at
the ends of the curves because, at high enough con-
trasts, the computation in the normalization prediction
is a division of a particular channel’s response by the
sum of all channels’ responses, and hence it is ratio of
contrasts that matters. (In other words, see Appendix
A, � in Eq. (17) becomes negligible when those re-
sponses are high).

3.3.2. Expansi�eness in area experiments
The normalization model (Fig. 1) can easily predict

simultaneously the compressiveness seen in constant-
difference experiments just discussed and the expansive-
ness seen in the area experiments (at the same middle to
high contrast ranges, with same observers, etc.). In
short — it can predict those results which eluded the
early-local models. We attempt to explain why the
normalization model makes these predictions in the
following paragraphs.

According to the normalization model, the effects in
the area experiments depend almost entirely on the
properties of the channels and are almost totally inde-
pendent of the normalization network while the effects
in constant-difference experiments for same-sign-of-
contrast patterns (at high contrasts) depend almost
entirely on the properties of the normalization network
and are almost totally independent of the properties of
the complex channels. This near-independence predicted
by the normalization model for the two types of exper-
iments is entirely unlike the prediction above of the
early-local model. The reason behind the predicted
near-independence is the following: In the normaliza-
tion model, the tradeoff between area and contrast
occurs within individual channels (when the channels
integrate across each element in the pattern) and is
complete before the action of the normalization net-
work, and thus is not affected by the normalization
network. We have confirmed this with numerical calcu-
lations (although none are shown here in the interests of
space), and it is also evident in the approximate equa-
tions approach (see Appendix B). For the normalization
model to predict the nonlinear (expansive) tradeoff
from the area experiments using grating-patch elements,
therefore, the complex channels simply need to have an
appropriately expansive function at the intermediate
stage in the complex channels. The properties of the
normalization network in the model are irrelevant.
Similarly, the linear tradeoff for square-element pat-
terns is predicted as a consequence of the linear summa-
tion in the simple channels.

Conversely, the predicted compression in the con-
stant-difference experiments at middle to high contrasts
(where the normalization effect is strong) is largely

determined by the properties of the normalization net-
work itself and does not depend very much on the
properties of the complex channels. For example, in the
high-contrast predictions of Fig. 14 (right panels), as
noted before, the amount of compression shown (the
decreased segregatability at the end of the curves) is
very much the same for linear complex channels (top
right panel) and expansive complex channels (bottom
right panel).

In summary, one can find parameter values that
allow the normalization model to predict simulta-
neously: compression in the constant-difference experi-
ments at middle to high contrasts (by choosing the
normalization network parameters appropriately) and,
for the area experiments in the same contrast ranges,
linearity for square-element stimuli (as a result of the
linearity of the simple channels) and expansiveness for
grating-element stimuli (by choosing the function at the
intermediate stage in the complex channels to be appro-
priately expansive).

3.3.3. Low-contrast expansi�eness in constant-difference
experiments

We can now return to the predictions of the normal-
ization model for the low-contrast case. As it turns out,
for constant-difference experiments done at low con-
trasts, the function at the complex channels’ intermedi-
ate stage does intrude to some extent in the
normalization model’s predictions for stimuli segregated
by complex channels. This intrusion is demonstrated in
the predictions of Fig. 14 (in the middle column for low
contrast, and in the left column for no normalization or
alternately, very low contrast). In particular, for com-
plex channels having a piecewise-linear function at their
intermediate stage when there is no normalization (top
left panel), the ends of each predicted curve are flat —
that is, the predicted segregation for all same-sign-of-
contrast patterns in a constant-difference series is flat.
However, for complex channels with an expansive inter-
mediate stage in the absence of normalization (bottom
left panel), there is considerable increase in segregation
toward the end of the curves. For low amounts of
normalization, some difference is still predicted due to
the kind of complex channel (the bottom versus top
middle panels of Fig. 14). In particular, for expansive
but not piecewise-linear complex channels, there is some
increase in segregation for same-sign-of-contrast pat-
terns that are just outside the dashed vertical lines at
+45 and −45° (although at the far ends of the curves
there is a downturn in both cases).

In short, at contrasts low enough that the effect of
the normalization network itself is still small, the nor-
malization model predicts that the expansiveness in the
function at the intermediate stage of the complex chan-
nel ‘leaks through’ and shows up as expansiveness in the
constant-difference results.



Thus the normalization model with expansive com-
plex channels not only explains simultaneously the re-
sults of area experiments and constant-difference
experiments at middle to high contrasts but provides
automatically an explanation of a new and initially
puzzling result we find in the low-contrast constant-dif-
ference experiments here (which we have mentioned
previously but postponed talking about until now),
namely, the expansiveness seen in some of the results.
This expansiveness is particularly clear in the lowest
contrast range with the 12 c/deg gratings for observer
WS (see lower left panel of Fig. 11). In this panel the
curves turn upwards outside the vertical lines at �45°
rather than downwards.

This expansive aspect of the results at low contrasts
can also be seen in the best-fitting early-local functions
for the 12 c/deg grating-element patterns. There it
shows up as positive acceleration at low contrasts
(slopes greater than 1.0 at low contrasts on the log–log
plots of Fig. 13). Notice that for observer WS (upper
right panel of Fig. 13), the best-fitting function is
expansive at the lowest five or six contrasts; that is, its
slope is substantially greater than 1 on the log–log
plots. This is also true for the lowest three contrasts for
observers JH and CAS. (The fourth observer CV was
not tested on contrasts as low as the others.)

While for low-spatial-frequency (3/deg) grating patch
elements, there is little if any expansiveness at low
contrasts clear to the eye (top left panels top rows Figs.
10 and 11), nonetheless the corresponding best-fitting
early-local nonlinearities (not shown here) do show
some expansiveness. It is possible that low-spatial-fre-
quency results would also show this upturn clearly even
in plots like those of Figs. 10 and 11 if we had studied
them at low enough contrasts.

If the expansive function at the complex channels’
intermediate stage is the correct explanation of the
expansive results at low contrasts in the constant-differ-
ence experiments, then there are two other things to
say. First, the constant-difference results here suggest
that the complex channels’ intermediate stage is expan-
sive down to lower contrasts than we knew previously.
(The expansiveness in the best-fitting functions in Fig.
13, which indicates expansiveness in the constant-differ-
ence results, is visible below the range indicated by the
dashed lines, which is the range from the area
experiments).

Second, if this explanation is correct, there should
not be expansiveness at low contrasts in constant-differ-
ence results for stimuli segregated by simple channels,
e.g. the regularly-spaced square-element patterns used
here (although there is some complex-channel intrusion
even here as we have discussed in Graham & Sutter,
1996, 1998, and above). This is indeed the case. For
example, in the plots of Figs. 8 and 9, the regularly-
spaced conditions (top two rows) show very little evi-

dence of expansiveness. Also, the best-fitting functions
for regularly spaced squares (e.g. Fig. 12) show little
expansiveness at low contrasts. The small amount of
expansiveness that is present for regularly-spaced
squares may be due to the slight complex-channel intru-
sion. Consistent with this presumption, there is more
evidence of expansiveness in the results for sparsely
spaced squares (e.g. bottom row, left panel, Fig. 8) than
for regularly-spaced squares, and complex channels
may well dominate in the segregation of these sparsely-
spaced square-element stimuli (as discussed above).

3.3.4. Two other successes
Finally, we mention two further successes of the

normalization model although they concern matters
that are side issues here.

The normalization model can naturally predict the
kind of difference seen in results at different scales (3
vs. 12 c/deg here, or different sizes of regularly-spaced
squares both here and in Graham & Sutter, 1996). The
normalization model makes this prediction by scaling
the sensitivity to different spatial frequencies in either
of two ways: either by assuming a separate sensitivity-
setting stage (as was assumed and shown in Fig. 1) or
by letting a sensitivity factor be absorbed in each
channel.

In addition to the stimuli at the ends of constant-dif-
ference series, described here, we have studied another
situation for which the normalization model predicts
dependence only on contrast ratio and the empirical
results show such dependence. This situation is in ex-
periments estimating the bandwidth of simple and com-
plex channels: The two types of elements in a pattern
differ in spatial frequency or orientation, and their
contrasts are also varied Once the contrasts are high
enough, the segregation for a given pattern depends
only on the ratio of contrasts in the two element types
as is predicted by the normalization model (unpub-
lished results from the study of Graham, Sutter &
Venkatesan, 1993).

3.4. Some related issues

We have argued above that the results from constant-
difference and area experiments considered together
strongly favor the normalization model (Fig. 1) since
other known alternatives have been ruled out. In partic-
ular, these results considered together are inconsistent
even with the relative form of the early-local model
(Fig. 2). However, a number of issues might cause some
confusion or seem worth further brief consideration.

First, although a relatively-early-local function by
itself fails as a model of the intensive nonlinearity, one
might wonder if a relatively-early-local function could
exist in the full model in addition to the normalization
network without undermining the successes of the full



model. The answer is ‘yes’ but its effects would have to
be mild enough in the middle to high contrast range
that it did not substantially affect the results of either
class of experiment.

Second, it is important in general to distinguish
between global contrast-gain controls like that in a
normalization network — in which the signal con-
trolling the contrast gain depends on a pooled response
representing many orientations and spatial frequencies
(but not necessarily a wide spatial area) — and within-
channel contrast-gain controls which depend only on
the response of the channel under consideration and
thus only on the spatial-frequency and orientation
range to which that channel is sensitive. A within-chan-
nel contrast-gain control can, in principle, explain a
number of the results frequently attributed to contrast-
gain controls, including the saturation seen in response-
versus-contrast curves for many physiological and
psychological responses, and also the changes in con-
trast gain resulting from adaptation to patterns. In
many situations it would be impossible to distinguish
global from within-channel contrast-gain controls.
However, although we have not previously addressed
this point, a within-channel gain control cannot by
itself explain the original phenomenon in our texture-
segregation results for which the intensive nonlinearity
was invoked. In particular, it cannot explain the com-
pressiveness in the results of constant-difference
experiments.

A within-channel gain control (e.g. a late within-
channel nonlinear function that acts pointwise on the
output of the channels) could exist in our model, how-
ever, in addition to a normalization network, because
calculations suggest it would have little effect on the
results of either kind of experiment described here.
There are late within-channel nonlinearities in models
of V1 cells by Albrecht and Geisler (1991) and Heeger
(see Nestares & Heeger, 1997; Tolhurst & Heeger,
1997a; Tolhurst & Heeger 1997b), where these late
nonlinearities are expansive. Also, the pattern-discrimi-
nation model of Olzak and Thomas (1998) includes a
within-pathway nonlinear function that is both expan-
sive and compressive (in addition to the compression
introduced by their divisive global gain control embod-
ied in a normalization network).

A third issue is that of alternate forms of complex
channels. We have previously introduced two alternate
versions of complex channels that differ from the origi-
nal complex channels used here in the particular details
of the second-stage pooling (Graham & Sutter, 1998).
In explaining the area experiments, it did not matter at
all which of the three versions of complex channel one
considered. However, it does matter to some extent
here. One of the versions (version 2 in Graham &
Sutter, 1998) does not predict expansiveness at low
contrasts (like that shown in Fig. 14 bottom row, left

and middle panels) and, therefore, is not a satisfactory
model for the full set of empirical results. The other two
versions make essentially identical predictions for the
constant-difference experiments here and so cannot be
distinguished by these experiments either.

A fourth and broader issue about complex channels
is the question of whether both simple and complex
channels are actually necessary. In our previous papers,
we have assumed without comment that there were
both, as in the diagrams of Figs. 1 and 2. In the motion
literature, where both Fourier and non-Fourier chan-
nels had similarly been suggested, the existence of two
kinds is now a point of contention. Some investigators
suggest other models of motion perception altogether,
and some suggest that both Fourier and non-Fourier
stimuli are processed by a single kind of channel.
(Recent reviews of parts of this dispute can be found in
Taub, Victor & Conte, 1997 and Clifford & Vaina,
1999). While the answer to this question for static
patterns may not be definitive, the evidence suggests
that both kinds of channels are probably necessary.
One line of evidence is based on luminance and con-
trast modulation thresholds for modulated white noise
(Schofield & Georgeson, 1999). Another is the results of
element-arrangement texture segregation experiments
measuring the bandwidth of the first stage of complex
channels (Graham et al., 1993). These estimated first-
stage bandwidths are substantially narrower than those
estimated for motion (see Werkhoven, Sperling &
Chubb, 1993 and a directly comparable texture experi-
ment reported by Graham, 1994). Thus static texture
perception may differ from motion perception in this
regard although we suspect that both kinds of channels
are necessary in both domains (unless of course one
elaborates other stages of the model so much as to
effectively embody both kinds of channels in other
forms, e.g. Blaloch, Grossberg, Mingolla & Nogueira,
1999).

Finally, the experimental results here show that the
normalization network acts quite similarly on the out-
puts of both simple and complex channels. But there is
a related question that we have not yet answered: do
complex channels as well as simple channels contribute
to the normalization pool? To say it another way, is the
total amount of inhibition determined both by com-
plex-channel outputs and simple-channel outputs, or
are only the simple-channel outputs determining the
inhibition (and therefore the contrast gain)? One recent
report (Lu & Sperling, 1996) suggests that the complex
(non-Fourier) channels involved in motion perception
do not contribute to the normalization pool, or, in their
terminology, do not contribute to the control of con-
trast gain. In the experiments reported here with ele-
ment-arrangement textures, however, the answer to the
question of whether complex channels are in the nor-
malization pool is contingent on which version of com-



plex channels (Graham & Sutter, 1998) is correct, and
we do not know enough about that yet to have an
answer.

4. Summary

The perceived segregation of element-arrangement
textures forming constant-difference-series of patterns
was measured. Textures composed either of grating-
patch or of square elements were used. The spatial
frequency of the grating patches, and the size and
spacing of the square elements, were varied, and a wide
range of contrasts was used. These constant-difference
experiments included conditions and observers that
could be directly compared to the previously-published
area experiments (Graham & Sutter, 1998).

An unexpected result of varying the spacing of
square elements in these textures occurred: although
patterns composed of regularly-spaced square elements
were segregated by simple (linear, Fourier) channels as
expected, textures composed of sparsely-spaced square
elements were segregated by complex (second-order,
non-Fourier) channels. In other words, as small ele-
ments get further apart, complex channels generally
become better than simple channels at linking those
elements together into larger patterns.

The relatively-early-local model of the intensive non-
linearity (Fig. 2) proved untenable since it could not
explain simultaneously: (a) the results of the constant-
difference experiments reported here — particularly the
compressiveness at middle to high contrasts; and (b) the
results of previously-published area experiments using
the same stimuli in the same contrast ranges: in the area
experiments expansiveness is shown for complex-chan-
nel stimuli and linearity for simple-channel stimuli.

A contrast-gain control based on inter-channel inhi-
bition — as in a normalization network — can explain
simultaneously (a) and (b) as well as a number of other
results. A late, within-channel contrast-gain control is
not satisfactory as it cannot explain (a). At low enough
contrasts of stimuli processed by the complex channels,
the normalization model predicts expansiveness rather
than compressiveness in constant-difference results.
This prediction was confirmed. Thus contrast-gain con-
trol as embodied in a normalization network is a ten-
able and attractive model for the intensive nonlinearity.
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Appendix A. Model Equations

A.1. Equations: simple and complex channels

In this subsection, we briefly give the equations for
simple and complex channels responses to square-ele-
ment and grating-element patterns in the absence of
any intensive nonlinearity. For further description of
why simple and complex channels respond as they do,
see Sutter et al. (1989), Graham (1991), Graham et al.
(1992), Graham and Sutter (1998).

Let DS denote the contribution of the simple chan-
nels to the predicted perceived segregation for square-
element patterns. This contribution is the difference
between the relevant simple channels’ responses in the
checkerboard and striped regions. For the experiments
here, great simplicity is introduced because the orienta-
tions of the fundamental frequencies in the two regions
are so far apart (oblique in checkerboard region, hori-
zontal in striped region). Thus, to a very good approx-
imation, the channels segregating these regions have a
(non-zero) response in at most one of the two regions.
Further, all the relevant simple channels can be approx-
imated by one channel, which we will call the tuned
simple channel, which is characterized by a receptive
field matched to the spacing of the pattern elements.
(See a comparison of filtered responses from the full
model and the equation below in Graham, 1991, and
Graham et al., 1992.) Also, the tuned simple channel
response RS pooled across the one region in which it
has a non-zero response is approximately proportional
to its maximum response in that region, and this is the
response from the receptive field centered on a strip of
the more effective of the two element types. Since the
excitatory center is stimulated by a strip of the more
effective elements and the inhibitory surround by a
strip of the other elements, the response of the receptive
field will just be the difference between its stimulation
by the two types of elements. In symbols, therefore,

DS=RS=wS · � A1 · C1−A2 · C2� (1)

where the quantities C1 and C2 are the (signed) con-
trasts of the two element types and A1 and A2 are the
areas of the two element types. The parameter wS

represents the sensitivity of the observer’s simple chan-
nels to the type of pattern under consideration (i.e.
whether it is composed of square-element or grating-el-
ements, the size or spatial frequency of the elements,
the orientation of the elements) but wS does not depend
on the contrast or areas of the elements which are
represented by the other parameters. For grating-ele-
ment patterns, we will let wS=0. (The contribution
from the simple channels is so small as to be negligible
but is not in fact quite equal to 0).

Let DX be the contribution of the complex channels
to segregation, which, by analogous reasoning to that



described above, can be approximated by the response
of the tuned complex channel, which is the difference
between its response to the two types of elements. This
tuned channel is a complex channel having its first filter
sensitive to the spatial frequency and orientation of the
grating patches and its second filter sensitive to the
fundamental frequency and orientation in either the
checkerboard or the striped region. Then:

DX=RX=wX ·{A1 ·�C1�km−A2 ·�C2�km} (2)

where C1, C2, A1 and A2 are as before. The parameter
wX reflects the sensitivity of the complex channels. The
exponent km describes the expansiveness or compres-
siveness of the pointwise function at the intermediate
stage in the complex channels. (Of course, if the inter-
mediate function were something more complicated
than a power function, we would need to replace Eq.
(2) by a more complicated expression. Fortunately, for
this paper a single power law is sufficiently general).
The value of wX would generally be high for grating-el-
ement patterns. But wX is not necessarily zero for
square-element patterns because some complex chan-
nels can signal the difference between the checkered and
striped regions of square elements and thus can con-
tribute to segregation. (These contributing complex
channels are those having a first stage sensitive to high
spatial frequencies present in individual square elements
— e.g. at the edges — and a second stage sensitive to
the fundamental frequency and orientation of the
checkerboard or striped arrangements.) In Graham and
Sutter (1998) two alternate versions of complex chan-
nels were also suggested, which differed from those in
Eq. (2) in the details of second-stage pooling. These are
mentioned briefly in the discussion section but won’t be
considered in detail here.

A.2. Equations: combination and decision rules to
predict response of obser�er

Next, the contributions of the complex and simple
channels to segregation need to be combined to predict
the response of the observer. The full family of combi-
nation and decision rules we consider reduces here to
the combination:

D={DS
kd+DX

kd}1/kd (3)

where the exponent kd is the exponent characterizing
the Minkowski pooling that occurs at the Comparison
and Decision Rule (near right of Figs. 1 and 2). The
observer’s rating of perceived segregation is assumed to
be a monotonic function of this predicted value D. (See
illustration in Fig. 16 of Graham et al., 1992).

Note that many different perceptual processes are
presumably represented by this very simple decision
stage as there are undoubtedly many processes beyond
the channels and intensive nonlinear processes explicitly

considered in our models (e.g. He & Nakayama, 1994;
Lennie, 1998). Indeed, a number of higher processes
that may act on element-arrangement textures like
those used in the studies here have recently been sug-
gested (Beck, 1994; Pessoa, Beck & Mingolla, 1996;
Grossberg & Pessoa, 1998). For our purposes, however,
elaborating these higher-level stages in anything beyond
this simple decision rule has not proved necessary. For
more discussion of this stage, see our earlier papers
(Sutter et al., 1989; Graham et al., 1992; Graham &
Sutter, 1998, Fig. 4 and Appendix).

A.3. Equations: early, local models

Intuition into why an early, local nonlinear function
leads to the correct predictions for the same-sign-of-
contrast patterns can be found in Graham (1991, Fig.
18.8 and 18.9) and in Graham et al. (1992, Figs. 15 and
16). A range of predictions is shown in Graham and
Sutter (1996, Fig. 6).

To calculate approximate predictions from the origi-
nal strong form of an early-local model (assuming that
the early, local nonlinear function acted directly on the
stimulus) one can use Eqs. (1) and (2) above, but
substitute the outputs of the early local pointwise non-
linear function, which will be called r(Ci), in place of
the original contrasts in those equations. The resulting
quantities will be subscripted ELN to distinguish them
from the corresponding quantities in equations above:

DS, ELN=RS, ELN=wS · �A1 · r(C1)−A2 · r(C2)� (4)

DX, ELN=RX, ELN=wX ·�A1 ·�r(C1)�km−A2 ·�r(C2)�km�
(5)

To predict the observer’s response (up to a monotonic
transformation) combine the two overall differences
and call the result DELN:

DELN={DS, ELN
kd +DX, ELN

kd }1/kd (6)

To compute predictions from the modified form of the
early-local model, that is, the relatively-early-local
model of Fig. 2, one in principle needs to filter the
stimulus with the sensitivity-setting stage’s filter (the
filter near the left of Fig. 2) and then proceed as with
the original model. Approximately speaking, however,
in keeping with our general approach, one can replace
Ci in Eqs. (4) and (5) by Si · Ci where Si is the
sensitivity of the early sensitivity-setting filter. Thus,
using RELN now as the subscript gives:

DS, RELN=RS, RELN

=wS ·�A1 · r(S1 · C1)−A2 · r(S2 · C2)� (7)

DX, RELN=RX, RELN

=wX ·�A1 ·�r(S1 · C1)�km−A2 ·�r(S2 · C2)�km�
(8)



A.4. Equations: normalization (inhibition among
channels)

For the normalization model we need to consider the
‘other’ channels that contribute to the normalization
pool (because they respond well in both the checker-
board and the striped region) although they do not
contribute to segregation itself (because they respond
equally well in the two regions). For the square ele-
ments, many of these ‘other’ channels will be simple
channels responding to the high spatial frequencies in
the edges of the squares; thus their responses are depen-
dent more on the perimeter length rather than on the
area of the elements. For the grating elements, many of
the ‘other’ channels will be simple channels responding
to the high spatial frequencies of the grating patches.

The spatially-pooled regional responses of these
‘other’ simple channels is approximately equal to (Gra-
ham et al., 1992):

ROS={�wO1 · C1�ksp+ �wO2 · C2�ksp}1/ksp (9)

where ksp is an exponent describing pooling across
spatial position within the output from any single chan-
nel, and wO1, wO2, are parameters describing the sensi-
tivity of the ‘other’ simple channels to elements of type
1 or type 2. This equation can be simplified for the
constant-difference experiments, since both elements
have identical spatial characteristics and thus wO1=
wO2=wOS, to

ROS=wOS{�C1�ksp+ �C2�ks}1/ksp (10)

It is also possible that some ‘other’ channels are com-
plex channels. One possible set of complex ‘other’
channels would be those having first filters sensitive to
the square-element edges or to the grating elements’
spatial frequency and having second filters sensitive to
the frequency of alternation between elements and in-
ter-element spaces; this frequency is twice the frequency
of alternation between the two types of elements. If
complex channels contribute to the normalization pool
(a topic we consider in the discussion), the possibility of
complex ‘other’ channels can be represented as follows
where wOX is the sensitivity of the ‘other’ complex
channels to the elements of the pattern under
consideration.

ROX=wOX ·{�C1�kspkm+ �C2�kspkm}1/ksp (11)

The normalization pool will consist of RX, RS, ROS, and
ROX. These channel responses are combined by
Minkowski pooling with the exponent kn. (The predic-
tions are not particularly sensitive to this exponent, so
we generally use kn=2 which makes our normalization
pool much like that in the models of Heeger, 1991,
1992a,b and others.) Letting POOL denote the normal-
ization pool,

POOL={�+RS
kn+RX

kn+ROS
kn +ROX

kn }1/kn (12)

where a constant � provides a necessary non-zero mini-
mum for the expression and sets the extent of the linear
range. Any imbalance among the four types of channels
in contributing to the pool can be easily incorporated.
As explained just before Eq. (1), DS=RS for the exper-
iments here, and similarly DX=RX. Thus POOL can be
written equivalently as:

POOL={�+DS
kn+DX

kn+ROS
kn +ROX

kn }1/kn (13)

Then RS, NORM, the response of a simple channel after
normalization has been applied at the spatial position
yielding the peak response, will simply be the response
before normalization at that same position divided by
the normalization pool’s response at that position:

RS, NORM=RS/POOL (14)

and similarly for complex channels:

RX, NORM=RX/POOL (15)

To finish the prediction from the normalization
network,

DNORM={DS, NORM
kd +DX, NORM

kd }1/kd (16)

which can be written equivalently in a number of ways,
one of which is:

DNORM=
{DS

kd+DX
kd}1/kd

{�+DS
kn+DX

kn+ROS
kn +ROX

kn }1/kn
(17)

In our previous presentations of this equation we as-
sumed that the pooling exponents for normalization
and decision (kn and kd) were identical. This need not
be true, and it is perhaps clearer to preserve the distinc-
tion as we have done in Eq. (17) although this distinc-
tion is not one that our results to date are sensitive
enough to discriminate. Previous publications also as-
sumed only a single kind of ‘other’ channels since we
had not yet confronted the fact of expansiveness at the
intermediate stage of complex channels.

Concealed in the derivation as presented above is the
question of how responses from different spatial posi-
tions within a channel are combined both in the nor-
malization pool and at the decision stage (that is, the
action of the combination rules across space at both
these stages). To explore this, one can go back and
explicitly include spatial pooling and allow exponents
describing those two kinds of spatial pooling to vary.
As it turns out, the decision-stage and normalization-
stage spatial-pooling exponents get buried within con-
stants multiplying the numerator and denominator
respectively in Eq. (17). Thus they have no effect here
(since the observer’s rating is assumed to be a
monotonic function of the predicted value DNORM). In
fact, all the parameter values characterizing the normal-
ization and decision stages seem to be unimportant for
our arguments in this paper.



Appendix B. Some explanations of model predictions

B.1. Why should complex channels be more in�ol�ed in
segregating the sparsely-spaced squares than the
regular squares?

Consider the large-regular and the small-sparse pat-
terns. They have the same fundamental frequency (the
center-to-center spacing of the elements is the same), so
the simple channels that respond best are the same for
both patterns. Also at least some of the complex chan-
nels that respond significantly will be the same for both
the large-regular and small-sparse patterns. (These are
complex channels having first-stage filters that are sen-
sitive to very high spatial frequencies — those frequen-
cies represented in the edge of the square elements of
whatever size square — and second-stage filters that
are sensitive to the fundamental frequency and orienta-
tion in either the checkerboard or the striped region).
Consider what happens to the responses of these two
classes of channel as one shifts from the large-regular to
small-sparse patterns (as the square size is decreased
while keeping the center-to-center distance between
squares the same). The simple-channel response de-
creases in proportion to the area of the elements (pro-
portional to width-squared, a factor of 16 in the current
experiments), but the complex-channel response only
decreases in proportion to the total edge length (pro-
portional to width, a factor of 4 in the current experi-
ments). The picture is complicated by the potential
presence of a wide variety of complex channels, but it
seems clear that the ratio of complex-to-simple-channel
response will generally increase substantially as one
goes from regular to sparse spacing.

B.2. Why the normalization model predicts
compresssi�eness in constant-difference experiments

The normalization model easily explains the de-
creased segregatability for same-sign-of-contrast pat-
terns (the downturn at the ends of the curve for a
constant-difference series, in, e.g. Fig. 7 bottom row).

It is due to increased inhibition (a larger denomina-
tor in Eq. (17)) in the presence of approximately con-
stant excitation (a constant numerator) as one moves
toward the ends of the constant-difference series.

For square element patterns, the effect in Eq. (17) is
particularly easy to see. Remember that the response of
the simple channel segregating these patterns — before
the normalization network — is the same for all pat-
terns in a constant-difference series (see Eq. (1)) and
hence the numerator of Eq. (17) stays constant. It turns
out the response of the ‘other’ channels that contribute
to the normalization pool only (primarily simple chan-
nels responsive to the high-spatial-frequency edges of
individual elements) is much larger at the ends of the

constant-difference series than in the middle because
the contrasts of both element types become very large
at the ends. See the stimulus profiles in Fig. 5. This
effect is obvious in Eqs. (9) and (10): the value of ROS

and/or ROX becomes very large because both �C1� and
�C2� become very large. Hence the size of the normaliza-
tion pool — the denominator of Eq. (17) — becomes
very large toward the ends of the constant-difference
series.

The argument for the case of grating-element pat-
terns and complex channels is complicated by the po-
tential presence of the expansive or compressive
function at the intermediate stage (see Eq. (2)) which
means that the responses of the complex channels will
not necessarily be constant toward the end of the
constant-difference series (although they will for an
exponent of one). But numerical calculations show that
once the contrast is high enough to bring the normal-
ization into action, the effect of the complex channel
intermediate stage (even if it is quite expansive) is
overcome in these experiments by the normalization
pool’s compressive behavior (as discussed in the main
text in connection with Fig. 14).

B.3. Why the tradeoff in area experiments is
independent of the normalization network

According to the normalization model, the effects in
the area experiments turn out to be quite independent
of the properties of the normalization network, depend-
ing primarily on the properties of the channels. The
effects in the area experiments are demonstrated in the
minima of curves plotting segregation versus contrast in
the elements of one type (one area) when the contrast in
elements of the other type (another area) is held con-
stant. (See Graham & Sutter, 1998, for more explana-
tion of how these minima show whether there is
expansiveness or compressiveness at the intermediate
stage of complex channels.) The tradeoff between area
and contrast occurs within individual channels (when
the channels integrate across each element in the pat-
tern) and the minima produced by this tradeoff are not
affected by the subsequent action of the normalization
network. We have confirmed this with numerical calcu-
lations, but it is also evident in the approximate equa-
tions approach. In terms of the equations, the minimum
in a segregation-versus-contrast curve occurs when the
areas and contrasts of the individual elements are such
that DS and DX (see Eqs. (1) and (2)) are 0 and hence
the numerator of Eq. (17) is 0. Changing the amount of
normalization (i.e. changing the values of � , ROS, and
ROX, which are all positive) only changes the value of
the denominator, leaving the numerator 0. Hence
changing the amount of normalization will not affect
the fact that a particular combination of areas and
contrasts produces a minimum. Hence changing the



amount of normalization does not affect the predicted
amount of expansiveness or compressiveness demon-
strated in area experiments.

Appendix C. Some details about calculating the model
predictions and fitting the data

For the model predictions and fits reported in this
study, we used the approximate-equations approach we
have used before. The equations are repeated above in
this appendix.

C.1. Sets of model predictions

The conclusions here are based on calculating predic-
tions from many versions of the relatively-early-local
and normalization models and comparing them qualita-
tively to the experimental results. In these calculations,
we varied the properties of the normalization network,
and/or the early-local nonlinear function and we also
varied the exponent of the nonlinear function at the
intermediate stage in the complex channel. We also
tried the several versions of second-stage pooling de-
scribed in Graham and Sutter (1998), but those results
are not reported in detail here. In these calculations we
generally considered only the complex channel and
simple channels that were ‘tuned’ to the patterns in
question, but we ran some simulations to check on
contamination from other channels (as we did in Gra-
ham & Sutter, 1998). Most of the predictions on which
the conclusions are based were done letting the expo-
nents in the normalization and decision stages of the
model (both across space and across channels) be equal
to 2. A sampling of computations with other exponents
at these late stages in the model showed no differences
in predictions relevant here. The quantities A1 and A2

represent the areas of the two element types. Since they
are identical in the constant-difference experiments re-
ported here, we can without loss of generality set them
equal to 1.0 and let all the sensitivity differences be
absorbed in the parameter wS. See the final paragraphs
of Section 2 in the main text for some further discus-
sion of the effect of the approximations involved in this
approach.

C.2. Fitting the models to experimental results

We also did one large set of quantitative fits of
models to the results from the constant-difference ex-
periments here. We fit both normalization and rela-
tively-early-local models to all the experimental results
both for square elements and grating elements. These
fits were done in the same way as the set of fits reported
in Graham and Sutter (1996) for previous square-ele-
ment constant-difference experiments except that, for

the grating-element patterns here, the parameter wS was
set equal to zero to save time (since it always came out
very near zero when allowed to vary in pilot calcula-
tions). For square elements the contributions of simple
and complex channels, wS and wX, were allowed to vary
as before. These fits all assumed a complex channel
with a piecewise-linear intermediate stage (km=1) and
assumed that the sensitivities to the two elements (Si in
Eqs. (7) and (8)) were equal to each other as the
elements were identical except in contrast. The gener-
ally excellent quality of the fits, and also the patterns of
best-fitting parameters (and the interactions among
these parameters), were all like those reported in Gra-
ham and Sutter (1996) and so will not be described in
detail here. However, Figs. 12 and 13 do show the
best-fitting early-local functions from these fits as a
means of comparing compressiveness. More exactly,
these figures plot the best-fitting value of r(S1 · C1) in
Eqs. (7) or (8) as a function of C1 (assuming km=1).

Using exponents km other than 1.0 at the complex-
channel intermediate stage does not change the excel-
lent quality of the fits to the constant-difference
experiment results for either the normalization model
or the relatively-early-local model. Nor does it change
the degree of normalization deduced from the fits to
that model. But it does change the deduced relatively-
early-local nonlinear functions (e.g. Figs. 12 and 13)
quite dramatically, as the nonlinear function in the
complex channels’ intermediate stage acts much like a
relatively-early-local nonlinear function so the effects in
the experimental results would be the concatenation of
the two functions. (Indeed, this is the basis for the
rejection of the early-local models as is discussed in
great detail in the main text.)
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