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Moedels incorporating linear spatial-frequency- and orientation-selective channels explain many aspects of
visual texture segregation. The inability of such models to fully explain texture segregation results, indicates
that non-linear processes are also involved. One non-linearity that has been suggested is complex channels
consisting of two stages of linear filtering separated by a rectification-type non-linearity (much like cortical
complex cells). Here we further demonstrate the usefulness of complex channels in explaining texture
segregation results and investigate the orientation-selectivity of the first stage of such complex channels.
Our results suggest that the ficst stage is much more selective for orientation than are lateral geniculate
nucleus cells, but that the first-stage orientation bandwidth is rather wide with some interaction ocolring

between perpendicular orientations,

An important, relatively low-level process in visual
perception may be region segregation; that is, there may
be an early stage in which the visual systemi’ breaks a
visual scene into spatial parts {meaningful regions) before
going on to do higher-level computations. The laboratory
task of texture segregation may depend largely on this
low-level region-segregation process. {For a thorough
review of previous literature on texture segregation, sce
reference 1) Spatial-frequency- and orientation-content
are important determinants of perceptual texture segrega-
tion, and models incorporating spatial-frequency- and
orientation-selective channels explain many texture-
segregation results. ( The response of a linear channel to
a compound stimulus is the sum of its responses to the
stimulus components.) It has become clear, however, that
linear channels, by themselves, are insufficient to cxplain
segregation. Thus satisfactory models must include
non-linear processes, However, little is yet known about
the properties of these non-linear processes. We have
previously proposed the existence of at least two kinds
of non-lincar processes; a spatial non-linearity and an
intensity-dependent non-linearity®®. Others have pro-
posed alternative processes that may perform quite
similar functions®~% Other work suggests what may
be still a third kind of non-lincar process that operates
over larger distances™?; here we teview briefly simple
linear models and then go on to explore the properties
of the proposed spatial non-linearity, namely complex
channels.
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Simple-channel meodel

In our simple-channel model of region {texture) segrega-
tion®, the first part of the model is a set of multiple, linear,
spatial-frequency and orientation-selective channels. The
second part of the model is a higher level process that
compares the channels’ aggregate activity in response to
different spatial regions of the pattern, and asks whether
the outputs of channels differ from one region 1o another.
These simple-channel models are approximate embodi-
ments of Julesz’s original statistical conjecture about
texture segregation'®, put into the context of spatial-
frequency sensitivity channels first suggested by Campbell

-and Robson'!*?; the class we consider contains many

models suggested by other investigators. Chubb and
Landy'®, have referred to models like these as backpacket
models of texture segregation, that is, they are the models
numerous people pull out of their back pockets to account
for texture segregation. As many peopie have shown, this
class of simpie-channel models can aceount for many
phenomena of texture segregation,

Figure ! shows examples of patterns containing two
textures, each texture composed of the same two element
types but differently arranged (a checkerboard in the
middle and stripes in the left and right). In the top pattern,
only one element type is visible, as the other ciement type
has a contrast of zero. We will call this a one-clement-
type-only patiern. The elements composing the patterns
in Figure ! are balanced, that is, their space-average
luminance is equal to the background luminance. Accord-
ing to the simple-channel models, all element-arrangement
textures made from balanced elements should segregate

€ 1992 Bullerworth-Heinemann for British College of Optometrists
0275.-5408/92/020142-05




Figure 1 Examples of element-arrang paltern where the elements
are gratings. In the top panel only one type of element {a grating of
vertical orientation) is visible since other element has zero contrast, In
the middle and bottom panels the two types of elemenis are of the
same conirast and differ in orieatation by 22.5 and 90 degrees of rotation
respectively. In the stimuli used in the experiments, the luminance
averaged across each prating was the same as the background
luminance. Reproduction will have distorted the stimali somewhat in
these figures, however

poorly, if at all. The intuition behind this prediction is
explained at scme length elsewhere?, although it js
applied there to somewhat different patterns. Briefly, the
intuition is as follows. Only the filters tuned to high
spatial frequencies respond to patterns composed of
balanced elements, These high-spatial-frequency filters
respond with a mixture of positive and negative responses
to much the same degree in both the checkerboard and
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the striped regions (although the precise spatial arrange-
ment of the response differs in the two regions). The
second part of our simple-channels models (or the
analogous stage in all backpocket models of texture
segregation} then pools over local regions (ic. as in
computing the standard deviation of the responses at
different nearby positions), thus erasing the differences
in precise arrangement between the responses in the
checkerboard and the striped regions. Thus the simple
model predicts ihat these balanced-element patterns
should segregate very poorly.

Yet, many such textures scgregate very well indeed
(¢.g., ong-element-type-only patterns like the top pattern
in Figure 1). This result, along with other failures of
simple-channel models, suggests the existence of complex
channels or very similar caleulations?39.14-13

Complex-channels models

In the complex-channel model, the simple channels are
augmented by (or perhaps even replaced by) complex
channels like that in Figure 2. Each complex channel
consists of two stages of lincar filtering separated by a
rectification-type non-linearity that is dramatic near zerc.
This structure is like that suggested for cotnplex cells in
the cortex?®, The final part of the complex-channel model
(the pooling rules for comparing channel outputs in
different regions) is identical to the analogous part of the
simple-channel model. Why such complex channels
predict segregation with balanced-element patterns is
explained more fully elsewhere?. Briefly, however, such
channels can respend to low-frequency arrangements of
high spatial frequency eclements (as in amplitude
modulated radio transmission),

To date, little is known in detail zbout these complex
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channels, although one study'® does suggest that, in any
particular complex channel, the first stage is maximally
sensitive to spatial frequencies three or four octaves
higher than those to which the second fiitering stage is
maximally sensitive (i.e., the receptive fields at the second
stageare 8- 16 times larger than those at the first stage).

Il the physiological substrate For the first stage of
complex channels is a set of lateral geniculate nucleus
(LGN) cells, the first stage would show little orientation
preference (since LGN receptive flelds are approximately
concentric). If, however, the physiological substrate for
the first stage is a set of simple cortical cells (as impiied
by the diagram in Figure 2 where the receptive fields are
elongated), the first stage should show considerable
selectivity for orientation. Here we report experiments
designed to measure the first-stage’s orientation selectivity.

Experiment

Observers rated the degree of segregation between the
checkerboard and striped regions in patterns like those
of Figure { where the two clement types were both patches
of sinuscidal grating differing in orientation,

To understand the reasoning behind this experiment,
consider a pattern where the two orientations of grating
patches are very different (ie. the bottom panel of
Figure ). Suppose that the first-stage filters of complex
channels are not oriented. Then the pattern should not
segregate since the same complex channels are responding
ta both ¢lements. (The second-stage of complex channgls
spatially pools the rectified outputs from the first stage
and thus erases differences between the elements if the
first stage responds to both clement types.)

If, however, the first-stage filters are orientation-
sclective, these two element types {of very different
orientation) will stimulate cntirely different subsets of
complex channels. Henee, from the point of view of any
one complex channel, this pattern will be a one-element-
only type pattern. And the second-stage filter will respond
quite differently in the striped and checkerboard regions.
Therefore the pattern is predicted (o segregate very well
indeed.

More generally, the degree of orientation selectivity of
the first-stage filter can be measured by varying the
difference between the orientations of the two elements.

Methods and procedures

For the experiments reported here, element 1 was always
a patch of vertical grating. Element 2 generally differed
{rom element 1 in orientation. Its orientation could be
one of seven different values varying from vertical to
horizontal. Figure I shows cases where element 2 has
contrast zero (top panel), has the same contrast as
element 1 but is oriented at 22.5 degrees clockwise from
vertical (middle panel), has the same contrast as element
1 and horizontal orientation (bottom panel).

Details of experiment. The elements were Gabor patches
with a concentric Gaussian window having a half-width
half-height of 8 pixels (0.25 degrees at a viewing distanee
of 0.91 m) truncated at + 16 pixels so as not to overtap
with the neighbouring elements. The centre-to-centre
spacing between neighbouring clements was 32 pixels {1
degree); thus the fundamental frequency of the striped
region (one period of which consists of two rows of
clements and two rows of inler-element spaces) was 0.5
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per degree. The numbers, spacing, and arrangements of
the ¢lements can be seen in Figure 1.

The spatiai frequency ol the grating patches used in
the experiments was 8 c/deg {a period of 4 pixels)
{To ensure their visibility, the period used in the grating
patches in Figure ! was 8 pixels; thus each patch in Figure 7
contains only half as many cycles as in the experiments
reported here).

Values of the base contrast for each orientation were
roughly equated for visibility on the basis of pilot
experiments with each observer. When the element was
vertical, the base contrast was 5%.

Two types of session were used. In one type, the
contrast of element 1 eould be one of three equally-spaced
contrasts (zero, three, or six times the base conlrast, see
definition of base contrast belew); the contrast of element
2 could be one of ten equally-spaced levels including zero
where the lowest non-zero level equalied the base
contrast. In the other type ol session, the contrast of both
clements could be one of four equally-spaced levels
including zero where the lowest non-zero level was the
base contrast. In this second type of session, the second
element could be present in one of two phases 180 degrees
apart (with cither a dark or a light bar just to the left of
centre.) Either type of session contained two replications
of every stimulus, end two scssions were used in an
experiment (four replications of each stimulus). Two
observers (M.H. and C.V)) ran in both types of session.
The orientation-selectivity estimated from both types of
session was very similar (much closer than the differences
betwesn subjects illustrated in Figure 3) and so the results
from both types have becn averaged together. The two
other subjects only ran in the second type of session,

Each trial started when the subject pressed the
appropriate part of a response device (an 'unmouse’).
The stimulus was presented for 1s with abrupt onset and
offset. A 1s delay was then enforced after which
a beep signalled to the observer that a response would
be accepted. The observer indicated the degree of
perceived segregation by pressing the appropriate position
within a four-inch rectangle on the response device { where
the lelt edge indicated minimal and the right edge
maximal perceived segregation). The patterns were
generated by a Macintosh Ilei on a standard Apple
Monitor.

Estimating channel sensitivity

Precise estimates of the sensitivity function of a complex
channel’s first stage necessarily depend upon many
assumptions of the model. Here we rely on an approxima-
tion shown in the imset of Figure 3. For the curve
shown in the inset of Figure 3, the contrast of element 1
was held constant at a value greater than zero while the
contrast of element 2 was varied as indicated on the
horizontal axis. The observer's rating is shown on the
vertical axis. Let r (for range) be the amount of
segregation when element 1 {the vertical grating element)
is the only type of element present. Let d (for dip) be the
maximal amount by which the segregation is decreased
due to the presence of the second element.

Note that d/r is intuitively a measure of how much
the second element can interfere with the first element.
In the complex-channels model, such interference occurs
when both elements excite the same complex channels
to some extent (becavse the channels’ first stage is
somewhat sensitive to both),
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Figure 3 Estimate of orientalion sensitivity of first §tagc of complex channel Vertical axis of main figure is the d/r ratio as shown in the

inset. See text for lurther explanation

More formally, for at least one class of reasonable
model (Graham and Sutter, in preparation), it can be
shown that: i

d_Su2)  SadD)
FooOSA1) 8,23

where Channel A is a channel in which the first stage is
more sensitive to element 1 than to element 2; §,(i) is
the sensitivity of Channel A to a pattern in which only
element 7 is present (that is, it equals the reciprocal of
the contrast which produces a response of magnitude 1.0
from Channel A); and S,.(i} is the sensitivity of the
observer to a pattern in which only elsment i is present
(that is, it ¢quals the reciprocal of the contrast which
produces a criterion-sized response of magnitude 1.0 from
the observer).

The relative sensitivities reported here should be
treated with caution for several reasons. The model
leading to the above equation is incomplete; among other
things it ignores the intensity-dependent non-linearities
clearly displayed in previous work with palterns of this
general type®*. Also, for the results reported here, the
value of d was estimated from the minimal rating in a
curve rather than by fitting the model predictions to the
whole curve.

Results and conclusions

As shown above, d/r is an approximate measure of the
relative sensitivity (weighted by the contrast sensitivity)
of the complex channels’ first stage. These values are
plotted for four different observers in the main part of
Figure 3, As mentioned above, these values should be
treated with seme caution. Nevertheless, it seems clear
that the first stage of complex channels is much more
narrowly tuned for orientation than are LGN cells since,
for all four observers, the channels were not nearly as
sensitive to horizontal as to vertical.

For at least three of the four observers here, however,
definite interaction occurs between orientations 45 degrees
apart, and some interaction occurs even for perpsndicular
orientations. Indeed, the orientation bandwidth at half-
peak-sensitivity is about 45 degrees for three of the four
observers. For the complex-channel mode! of Figure 2,
where all the receptive fields at a given stage are identical
except in position, the first-stage bandwidth estimated
here is that characterizing the single receptive fields
composing the first fillering stage. Roughly speaking, the
wider the bandwidth, the less ciongated the excitatory
and inhibitory regions in that receptive field. Perhaps,
however, the first-stage filter's receptive fields differ
somewhat from each other in orientation; perhaps
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receptive fields of several different orientations (centred
at approximately the same position) feed into each
second-stage neurone. If so, the first-stage bandwidth
estimated here would characterize the conglomerate
composed of several different orientations of receptive
fields; thus it would be wider than the bandwidth
characterizing any one of the receptive ficlds.

The bandwidth estimated here for three of the four
observers is considerably broader than that estimated in
many other kinds of psychophysical experiments (pat-
ticularly those done with near-threshold contrast, as
reviewed in Graham?®!. These other experiments may well
be measuring the bandwidth of simpie channels and/or
of the receptive fields at the second stage of certain
complex channels (perhaps somewhere the first and
second stages of filtering are quite similar). On the other
hand, the bandwidth from the fourth obsarver is a good
deal narrower and within the range of estimates from
these other experiments. We plan o explore these
individual diflerences further by running this experiment
on other subjects as well as doing further experiments
an the subjects reported here.

The psychophysical results reported here suggest that
the physiological substrate for the first stage of complex
channels involved in region segregation is not LGN cells,
but it might be simple cells in cortical area V1, The
substrate for the seeond stage might be the complex cells
in VL It is still too early to be sure, however, that the
physiological substrate is not higher in the cortex.
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