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Observers rated the degree of segregation between two textures, each composed of the same two
element types but in differing arrangements (a checkerboard arrangement in the middle region of the
pattern and a striped arrangement in the top and bottom regions), The two element types in a given
pattern were either both solid squares or both center-surround elements. In center-surround elements
the average luminance equaled the background lnminance. The two element types were identical in
size but differed in sign and/or amount of contrast. Discrepancies between the ohservers® ratings of
perceived segregation and the predictions of simple (linear} spatial-frequency and orientation channels
models of texture segregation suggested adding nonlinear processes to the model. Complex channels
(a rectification-type nonlinearity between two linear-filtering stages) can explain why some patterns
made of center-surround elements segregate even though there is little energy at the spatial frequencies
that differentiate the two textures. Complex channels cannot, however, explain the very poor
segregation of “same-sign-of-contrast” patterns {where the luminances of the two element types were
both far above or both far below the background). This second result might arise from a local
nonlinearity preceding the channels and might be ascribed to retinal light adaptation except that it
occurs at contrasts < 25%! Alternatively, it might arise from normalization, which may result from
intracortical inhibition. Some preliminary quantitative predictions were computed from two models,
one incorporating complex channels and an early local nonlinearity, the other complex channels and

normalization. With suitable choices of parameters, either model could account for the results.

Texture perception Spatial-frequency channels

Nonlinearity Intracortical inhibition

INTRODUCTION

Two-dimensional spatial-frequency content (spatial
frequency and orientation) is a critical factor in “per-
ceived iexture segregation”, that is, in how well
differently patterned or textured regions of the visual
fleld are perceived to segregate into obviously separate
regions. (This has been known since the early studies
of Beck and Julesz and their colleagues; for a review
of the texture segregation literature, see Bergen, 1992).
Analyzers that are selectively sensitive along the spatial-
frequency and orientation dimensions (also called chan-
nels, detectors, pathways, mechanisms, units, neurons by
various writers) are thought to exist at a relatively low
level in the visual system. (For reviews of the concepts
and the evidence see, e.g. DeValois & DeValois, 1988;
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Graham, 1989b.) Thus a number of investigators have
asked how well perceived texture segregation can
be explained on the basis of these low-level spatial-
frequency- and orientation-selective analyzers (e.g. Beck,
Sutter & Ivry, 1987; Bergen & Landy, 1991: Bovik,
Clark & Geisler, 1987, 1990; Caelli, 1982, 1985, 1988;
Chubb & Sperling, 1988; Clark, Bovik & Geisler, 1987T;
Coggins & Jain, 1985, Daugman, 1987, 1988; Fogel
& Sagi, 1989; Klein & Tyler, 1986; Landy & Bergen,
1988, 1989, 1991; Malik & Perona, 1989a,b; Nothdurft,
1985a,b; Turner, 1986; Victor & Conte, 1987, 1989a,b;
Victor, 1988). [The relationship between models contain-
ing spatial-frequency- and orientation-selective analyz-
ers and Julesz’s original statistical conjecture has heen
discussed in some detail by Klein and Tyler (1986} and
Victor (1988).] Only recently, however, has there been
much emphasis on quantitative comparisons between
psychophysical data and quantitative predictions from
models containing low-level spatial-frequency- and
orientation-selective analyzers (e.g. Beck, Rosenfeld &
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fvry, 1989; Bergen & Landy, 1991; Fogel & Sagi, 1989;
Landy & Bergen, 1988, 1989, 1992; Malik & Pe¢rona,
1990; Suttsr, Beck & Graham, 1989),

The work described here continues the quantitative
comparison begun in Sutter et al. (1989) between the
predictions of a simple spatial-frequency analyzer model
and the results of texture segregation experiments using
patterns like those in Fig. 1. These patterns are members
of the class of element -arrangement texture patterns used
originally by Beck, Prazdny and Rosenfeld (1983) and
explored further by Beck et a/. (1987), These patterns are
composed of a uniform background on which are super-
imposed two types of elements; the elements are ar-
ranged in stripes in the bottom and top regions of the
pattern and arranged in a checkerboard in the middle
region of the pattern. (In the right half of Fig. 1, one type
of element is equivalent to the background and thus nol
apparent.) The observer’s task is o indicate (on a scale
from 0 to 4} to what degree the whole pattern seems
effortlessly and immediately to contain two different
kinds of region (striped vs checkerboard).

The spatial-frequency channels in our simple model
are linear systems, much like arrays of simple cortical
cells. This model is the kind known to explain much of
texture segregation (see discussions, e.g. in Bergen, 1992;
Chubb & Landy, 1991; Victor, 1988). However, certain
counter-demonstrations to this general class of models—
based on constructing stimuli with special mathematical
properties—have also been known for some time. We
knew before beginning this work, therefore, that our
simple model would work well but probably not per-
fectly. Our aim was to find out precisely what a realistic
simple spatial-frequency channels model (with par-
ameters based on physiological and psychophysical evi-
dence) would quantitatively predict and, on the basis of
sysiematic discrepancies between these predictions and
the data, to add further visual processes (cither low or
higher level) to the model and then again to test the
enhanced model. Similar aims seem to be propelling
others (e.g. Bergen & Landy, 1991; Fogel & Sagi, 198%;
Landy & Bergen, 1988, 1989, 1991; Malik & Perona,
1990; Rubenstein & Sagi, 1990; Victor, 1988; Victor &
Conte, 1989a,b).

The comparisons between the predictions of the
simple spatial-frequency channels model and the data
from texture-element arrangement patterns like those
in Fig. 1 have turned out to be very revealing, showing
both the model's strengths and its weaknesses. In Sutter
et al. (1989) we varied both the contrast and area of
the individual elements. The two types of ¢lements in a
given pattern could differ in spatial characteristics (e.g.
large vs small squares or long vs short lines) and in
magnitude of contrast but not in sign of contrast (i.e. the
luminances of the two element types were both higher
or both lower than the background luminance). The
simple model correctly predicted the major phenomenon
in these results, namely a tradeoff between contrast
and area. There were systematic deviations, however,
between the simple model’s predictions and the exper-
imental results. These deviations suggested substituling
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nondinear channels {that act more like complex cells in
the cortex) for the simple linear channels of the original
model. These complex channels were introduced in
Sutter ef al. {1989) and are discussed further below.

Here we report further studies using element-
arrangement patterns. The two types of clement in a
given pattern were identical in spatia) characteristics but
differed in the sign and/or magnitude of their contrasis.
Further, we studied not only solid-square elements
{Fig. 1 top) but center-surround elements (where the
outer square ring and the inner square had identical
areas but opposite contrasts, as in Fig. I botiom). Using
center-surround elements removes the energy at the
fundamental frequency of the texture regions and thus
weakens the ability of simple linear channels to signal the
differences between the texture regions. Some deviations
between the experimental results reported here and the
simple spatial-frequency channels model’s predictions
can again be accounted for by introducing complex
channels, But other deviations suggest the necessity of a
second kind of nonlinearity, which we wiil call an
“Intensity-dependent” nonlinearity. We suggest two
alternative candidates for this second kind of nonlinear-
ity; either alternative could result from low-leve] visual
processes occurring in cortical areas V1 or V2 or below,
We then present predictions from two models, both
models assuming complex spatial-frequency channels
but each assuming a different candidate for the intensity-
dependent nonlingarity, Both models fit the data quite
well, and further work will be required to decide between
them.

Simple spatial-frequency channels model

The simple spatial-frequency channels model consists
both of assumptions about the channels themselves and
assumptions about the relationship between the chan-
nels’ outputs and the observer's response in an exper-
iment (Sutter ez al, 1989). These assumptions are
reviewed here.

Characteristics of simple channels (linear filters). Bach
simple channel is assumed to be a discretely-sampled,
linear, translation-invariant filier, The physiological sub-
strate for such a channel could be a set of linearly-acting
neurons, perhaps simple cortical neurons, all sensitive
to the same spatial frequency and orientation (that is,
all having receptive ficlds of the same shape, size and
sensitivity) but having receptive fields at a number of
different spatial positions. The spatial positions are close
enough together so that receptive fields of neighboring
neurons overlap substantially. The spatial weighting
function characterizing a channel {the physiological sub-
strate for which might be the receptive field sensitivity
profile of an individual neuron) was assumed to be a
two-dimensional Gabor function (as used, e.g. by Bovik
et al., 1987, 1990; Clark et af., 1987; Daugman, 1987,
1988; Field, 1987; Fogel & Sagi, 1989; Rubenstein &
Sagi, 1990; Turner, 1986; Watson, 1983). The particular
function makes little difference to these predictions,
however. The spatial-frequency and orientation half-
amplitude full-bandwidths of each filter were 1 octave
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and 38 deg of rotation respectively (as in Watson, 1983)
and in good agreement with results from neasthreshald
psychophysics (reviewed in Graham, 1989b). Again,
within rather a large range, the precise bandwidth makes
little difference for anything said here. The filters’ center
spalial frequencies were separated by a half-octave (each
one a factor of \/5 greater than the one befare} from
0.25 to 16¢/deg. Three orientations of filter-—vertical,
horizontal, and oblique (45 deg)—were used. These three
were sufficient to capture the significant features of the
patterns. (Note that left oblique and right oblique act
identically for the patterns used here) The spatial
weighting functions were all even-symmetric. Given our
full model, however, using muitiple phases at each
position would make little or no difference. We assumed
translation-invariance for computational simplicity,
(That is, in terms of the physiological substrate, we
assumed that the receptive fields at all spatial positions
are identical.) It would be preferable to instead include
the known changes in sensitivity with spatial position
{as, e.g. Watson, 1983 does) but it would make little if
any difference for the predictions reported here.

Figure 2 shows one pattern {left pane!) and two simple
channels’ outputs to it (middle and right panel). In the
left panel, there is a small square superimposed in the
middle of each texture region. The width and height
of this square equal one period of repetition in the
herizontal and vertical directions respectively. Thus
the fundamental frequency of these texture regions for
vertically-oriented and horizontally-oriented receptive
fields is the reciprocal of the width or height of these
small squares.

The brightness at a particular point in the middle and
right panels of Fig. 2 represents the magnitude of the
channel’s ouptut at that position (of the neuron having
a receptive field center at that position) where the
mid-gray represents zero, lighter grays represent positive
responses, and darker grays represent negative responses.
{Since neurons cannot actually yield negative responses,
one needs to think slightly about what the physiological
substrate for such a channe! really is. The conventional
answer is to use both or and gff cells where on cells signal
responses above zero and off cells responses below zero,
See, e.g. Heeger, 1991.) The middle pane! shows the
output of a vertically-oriented channel with peak sensi-
tivity to a spatial frequency near the fundamental
frequency of the texture regions. One of the receptive
fields from this channel is sketched as a trio of ellipses
superimposed on the pattern in the left panel; the ¢center
ellipse represents the excitatory center and the side
ellipses the inhibitory flanks of the receptive field, Notice
that when one column of elements is stimulating the
excrtatory center of receptive fields of this size, neighbor-
ing columns are stimulating the inhibitory flanks. Hence
the response of this channel (middle panel Fig. 2) is
strong in the striped region and absent in the checker-
board region. (Further explanation of these responses
can be found in Sutter e/ af., 1989; Graham, 1989a)

The right panel of Fig. 2 shows the output of a
much higher spatial-frequency channel (still vertically-
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oriented), The receptive field that characterizes this
channel is too small to sketch clearly in this figure.
Notice in the right panel that this channel's output
includes positive and negative responses along the verti-
cal edges of all the individual elements. Since there are
many elements of each type both in the striped and in
the checkerboard regicn, this channel responds well in
both regions. Indeed, there is very little (if any) difference
overall between the amount of responding by this chan-
nel in the striped region and that in the checkerboard
region. (There is a difference in the spatial arrangement
of responses since there was a difference in the spatial
arrangement of elements. This difference in spatial
arrangement will be exploited by the complex channels
presented subsequently.)

Figure 3 shows portions of the outputs of all 39 simple
channels used in our calculations (in response to the
pattern from Fig. 2 left panel). The 13 different spatial
frequencies of filter are shown in 13 different columns
and the 3 different orientations of Rlter in 3 different
pairs of rows. Each small square in Fig. 3 shows a filter’s
output from the middle period of the checkerboard or
from the middle period of the striped region (as indicated
by ‘“checked” or “striped” lubels on the right); these
middle periods are indicated by outline squares in the left
panel of Fig. 2. The filter outputs shown in Fig. 2 appear
in Fig. 3 in the upper pair of rows in the horizontal
positions corresponding to 1c/deg (for Fig. 2 middle)
and 11,3 c/deg (for Fig. 2 right). The responses of the
very low spatial-frequency channels, those at the left
edge of Fig. 3, are responses to the outside edge of the
pattern; and the differences between checked and striped
regions in these very low channels reflect the fact that the
striped regions were on the top and bottom of the
pattern and the checked region was in the middle (rather
than to characteristics of the checked or the striped
regions themselves). Qutputs of these 39 different chan-
nels to some other texture patterns are illustrated in
Graham (19892) and Sutter et af, (1989).

From channels’ outputs to an abserver’s response. Next
we discuss the assumptions that convert the channels’
ouiputs inte a quantitaiive prediction of the observer’s
rating of perceived texture segregation. As we had no
good a priori reason to select any one way of doing this
computation, we considered a whole family. As it turned
out, for the conclusions presented here, all members of
the family acted equivalently.

Figure 4 illustrates the several steps in the compu-
tation, The first step is to compute a spatially-pooled
response from each channel’s output in the checked
region and from each channel’s output in the striped
region. Let the output at position {x,y) of the channel
for the ith frequency and jth orientation be called
O,,(x,y). Then the spatially-pooled response computed
from the output of the ijth charnel to the checked
region equals

1
NN
F¥ 104l
[x. ¥) in one peried N,\- ) Nw
of checked region

R (ch) =
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FIGURE 4. Diagram of the computations involved in converling the channels” outpuls to an observer's response,
where N, and N, are the numbers of spatial positions in  overall difference denoted by the symhol D,
the x and y directions in one period of the pattern, and ireq Norien ki
the summation is done over one period in the checked D= { Y ¥ D, Senslisi )]"} 3
region. A, is the average value of O, over these spatial Lo

positions, and is close to zero for bandpass channels like
these. When the exponent &k = 2, the above measure is
equal to the standard deviation of the outputs at different
positions in one period of the given region. This measure
is also sometimes described as energy by crude analogy
to other situations using the same kind of mathematics.
We used exponents £ =1, 2, 3,4, as well as the maxi-
mum output, the minimum output, and the maxi-
mum-minimum difference between the outputs at
different positions. (For the patterns here, this last
measure is very close to using kK = oo in the above
equation.} All the general conclusions given below held
for all choices of k.

The within-channel difference computed from the £ th
channel’s output is the difference between the channel’s
spatially-pooled response to the checked and to the
striped regions. That is, for the ijth channel;

Dy; =|R,(ch) — R, (s)]. 2

For a concrete example, consider Fig. 3. It shows
large within-channel differences for four channels: the
two vertically-oriented channels at spatial frequencies
of 1 and 1.4cfdeg (top pair of rows, near-middle
columns—which show a good deal of activity in the
striped but not in the checked region) and the two
obliquely-oriented channels at spatial frequencies of 1.4
and 2 ¢c/deg (middle pair of rows, near-middle columns—
which show a good deal of activily in the checked but
not in the striped region). For all channels other than
these four, the difference in spatially-pocled responses
between the checked and striped region is very small
Or Zero.

Next, the within-channel differences, after weighting
according to the observer’s sensitivities to different
orientations and spatial frequencies, are pooled into an

where S,,(i,j) is the observer’s contrast sensitivity
to the ith frequency and jth orientation, Ny, is the
number of frequencies (13—from 2 to 128 cycles/screen
in steps of ﬁ), and N, is the number of orientations
(3—horizontal, vertical and obligue). When the expo-
nent &’ = 2, the overall difference D is the root-mean-
square difference between regions. We also used
exponents 1, 3 and 4 as well as taking the maximum of
all the differences. The general conclusions below held
for alt choices of k. {Victor, 1988, also considers the
whole family of rules produced by different exponents,
but most authors have considered only the value 2.)

The sensitivity function we generally used for S,,.(7,7)
is described in Sutter et 4l. (1989) but changing it in any
reasonable manner would have almost no effect on the
predictions discussed in this paper. The weighting by
sensitivity S,.(Z, /) in equation (3) could be done equiv-
alently at any earlier stage of the computation. Indeed,
incorporating the sensitivity weighting in the channels’
outputs themselves (the 0,,’s) seems the most plausible
model of the visual process. (We incorporated the
weighting at the later stage to facilitate comparison of
different sensitivity functions,)

Finally, the observer’s rating of perceived segregation
is assumed to be a monotonic function of the predicted
overall difference D. If for no other reason, one must
include this final monctonic transformation between D
and the ratings because the observer's use of a 4-point
rating scale introduces a ceiling that does not occur for
D. This monotonic transformation will be denoted F(D)
below.

The above assumption relating channels’ outputs
to observers’ responses ignores the problem of how
the perceived boundary between regions is actuaily
extracted since it simply compares filter cutputs on either
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side of an experimenter-defined boundary. However,
our measures of pooled within-channel differences
are closely related to the local-energy and sum-of-
quadrature-pair measures used by others (e.g, Adeison &
Bergen, 1985; Bergen, 1992; Bergen & Adelson, 1986,
1988; Bergen & Landy, 1991; Bovik ez al., 1987, 1990:;
Clark er al,, 1987; Fogel & Sagi, 1989; Landy & Bergen,
1988, 1989, 1991; Turner, 1986). The relationship is
particularly close when the exponents =2 As these
others have shown, it is possible to use such measures in
a natural way to find the actual position of the bound-
ary. (There is further discussion in Graham, 1992.) Since
the computations involved are time-consuming, how-
ever, and little would be gained in predictive power for
the experiments here, we have not done so.

As is clear from the above equations, the assumptions
relating the channels’ outputs to the observer’s response
do introduce some nonlinearity into the predictions of
the simple model even though the individual channels
are simple channels (linear systems). This introduced
nonlinearity is of the kind typically found in decision
rules that compress a multidimensional internal rep-
resentation into the sparse set of responses given by an
observer in a psychophysical experiment. It is quite
different in tone from the nonlinearities discussed below
and does not mimic their effects in these experiments
(although it could in some situations). In any case,
because of the importance of the assumptions relating
the channels’ outputs to an observer’s response, we do
feel it is important to investigate a variety of such
assumptions. The families of pooling rules discussed
above certainly do not exhaust all possible assumptions
for this stage, but they encompass a wide and interesting
variety.

Pooling over subsets. Families of pooling rules like the
ones above have the following convenient property (used
in a number of places below):

(lgl ji Xﬁ)kl’ - ("?T Xf)g_ @

where

i s
(5.0
i=1

That is, one can first pool over subsets of the whole set
and then pool over these intermediate quantities and the
answer is the same as if one had pooled over the whole
set to begin with.

THE EXPERIMENTS: STIMULI AND
PROCEDURES

Stimuli

In each pattern the two element types were always the
same size and shape (either solid squares or center-
surround elements) but the squares differed in sign of
contrast (i.e. lighter or darker than the background)
and/or in amount of contrast, (The element type with the
greater absolute value of contrast comprised the {eftmost
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and rightmost stripes.) The mean luminance of all the
patterns was 16 ft-L and thus the appearance of the
background of all patterns in this experiment was much
the same, a mid-gray. Some examples are shown in Fig. 1
although they have, of course, been distorted by the
reproduction processes.

We used sets of stimuli like that represented in Fig. 5
or else subsets of this full set. In Fig. 5 each solid circle
represents a stimulus. (The squares and dizmonds
around some of the solid circles will become relevant
later.) The horizontal axis gives the incremental lumi-
nance of on¢ element type and the vertical axis the
incremental luminance of the other element type.
(Incremental luminance AL = I — L, where L is the
luminance of the point in question and £, is the lumi-
nance of the background. The axes in Fig. 5 show the
square’s incremental luminance in the case of solid-
square elements and the center’s incremental luminance
in the case of center-surround elements.} Incremental
luminances are shown in arbitrary units. Since the
background luminance was kept constant, the axes could
be replotted in terms of luminance. Similarly the axes
could be replotted in terms of contrast where the con-
trast of any point in these patterns (e.g. the center of a
center-surround element) will be defined relative to
the background luminance as ¢ = (L — L,)/L, = AL[L,
where L is the luminance at the point and L, is the
luminance of the background.

Note that the set represented in Fig. 5 contains the
texture patterns defined by all possible combinations of
a number of different positive and negative contrasts.
Only half a matrix of solid circles is shown because the
other half was presumably redundant. (Which of the two
sets of elements has which luminance presumably mat-
ters very little since the elements are all identical in size
and shape.)

The contrast of any individual element relative to the
background was never greater than 25%; exact values
will be given later with the two individual experiments.
It is worth pointing out that 25% is very low for the
literature on texture segregation where biack/white pat-
terns, i.e. patterns of 100% contrast, dominate; but 25%
is rather large for the psychophysical near-threshold
Literature from which most of the best evidence for
spatial-frequency channels has emerged.

Constant-difference series

From the set of stimuli diagrammed in Fig, 5, any
series of stimuli oceupying the same positive diagonal
(see inset lower right) is of particular interest. In such a
series the difference between the luminances of the two
clement types (L, — L, = AL, — AL,) is held constant,
while the absolute luminances of the two element Lypes
vary together. Examples of two such series are illustrated
in the next figure (Fig. 6) for solid-square elements
{top row) and center-surround elements (middle row).
Each little drawing in the figure represents the luminance
profiles of the two element types in one pattern. The
luminance profiles for a constant-difference series of
center-surround patterns (middle row) are analogous to
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FIGURE 5. Diagram of the set of stimuli. Incremental luminance of one elemsnt type is plotted on the horizontal axis and
that of the other element type on the vertical axis. Incremental luminance here is given in arbitrary units. The sizes and shapes

of elements remain ¢onstant thronghout a set of stimuli, Each symbol in the top panel

represents one stimulus in the set. (The

different symbols are explained in the text.} Lines along which the difference between the luminances of the two element types

is constant are shown in the lower right. Lines along which the radio of the incremental luminances {equivalently, the contrasts)

of the two element types is constant are shown in the lower-left diagram, and the corresponding contrast-ratio angle is labeled
on the outside of the square,

those for the solid squares (lop row) except that it is the
difference between the centers’ luminances that stays
constant. In a constant-difference series, which generally
contains more patterns than the five shown here, there
can be patterns where both element types have the same
sign of contrast (both darker or both lighter than the
background—an example is shown in Fig. 2 Ieft panel),
parterns where one element type has the same luminance
as the background so there is one element type only
apparent (which can be either dark or light—examples
are shown in Fig. 1 right) and patterns where the two
element types are of opposite sign of contrast (examples
are shown in Fig. | left).

Notice also that all patterns on a line through the
origin in diagrams like Fig. 5 have the same incremental
luminance ratio (AL,fAL,} and thus the same contrast
ratio. For example, as diagrammed further in the lower
left of Fig. 5, the patterns on the negative diagonal have
element types with opposite (but equal) contrasts; those
on the vertical ray upwards from the origin have one
element type only, and that element type is bright (or
with a bright center). Rather than using the pair of
luminances (L, and L) to describe a stimulus pattern,
therefore, another pair of values has proven very useful:
(1) the luminance difference L, — L, = AL, — AL,; and

(2) the angle, which we will call the contrast-ratio angle,
between the negative diagonal through the origin and the
line going through the origin and the point representing
a stimutus pattern. The value of this angle is shown
labeling the ¢nd of several rays in Fig. 5 lower left. (This
angle can be computed using the four-quadrant arctan-
gent of AL,/AL,.) See also the bottom labels of Fig. 6.

The exact stimulus sets used in the two experiments
will be described along with the results from those
experiments.

Some details of the patterns

The viewing distance was 6 ft throughout the exper-
iments reported here. At that distance 1 pixel subtended
1,08 min of visual angle. The solid-square elements and
the center-surround elements had the same outer dimen-
sion (14 pixels = 15.12 min on a side). The inner square
in the center-surround element (10 pixels = 10.8 min)
was chosen so that the area of the center (the inner
square) and that of the surround (the border around the
square) were as close as possible (o being equal. (They
were not quite equal, the center area being 100 pixels?
and the surround area being 96 pixels?). The contrast in
the center of the center-surround element (relative to the
background luminance) was always opposite and equal
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FIGURE 6. Each small diagram shows the luminance profile of the

twa element types in a single pattern within a constant-difference series

of patterns having either solid-square elements (top) or center-sur-
round elements (battom).

to that in the surround (relative to the background
luminance). Thus the average luminance across a center-
surround element was almost exactly equal to the back-
ground luminance (although not quite because of the 4%
difference between the center’s and surround’s areas and
the discreteness of the luminance levels available on the
display). The inter-element spacing was always the same
in both herizontal and vertical directions {12 pixels =
12.96 min). There were always 15 rows and columns of
¢lements as shown in the examples of Figs 1 and 2.

A period over which repetition occurs in both the
checked or the striped region is a square region with
its horizontal extent being two columns of elements
and two columns of inter-element spaces (32 pixels =
56.16 min of arc in these experiments) and its vertical
extent being two rows of clements and two rows of
interelement spaces (again 52 pixels = 56.16 min of arc).
The square outlines in the left panel of Fig. 2 indicate

*In subsequert experiments (not reported here) we automated the
rating procedure, with subjects pressing buttons instead of writing
down their ratings. The results of these experiments showed some
important differences from those reported here. We believe that the
differences are due to 2 marked increase in the speed with which
the subjects ran through the trials under the automated procedure,
thus encouraging ratings based on local rather than global infor-
mation, and possibly contaminated by strong afterimages. When
we imposed & 1sec delay between the stimulus offset and the
subject’s response in the automated procedure, we were able to
replicate the results reported here.

NORMA GRAHAM er 4l

single periods in the middle of the checkerboard and
striped regions,

The background luminance of the patterns, and also
the luminance of the blank screen that was presented
whenever a pattern was absent, was 16 ft-L. As shown
in Fig. 1, there were 15 columns and 15 rows of elements,
with the top third and bottom third being in a striped
arrangement and the middle third in a checkerboard
arrangement. The full spatial extent of the patterns was
454 pixels (8.2deg) high x 576 pixels (10.4 deg) wide.
Outside this extent the screen and room were very dimly
illuminated (0.05 ft-c). The patterns were presented for
1 sec with abrupt onsets and offsets. The subject sat in
a chair with unrestrained viewing.

Due to the discrete number of gray levels on the
display, the luminance levels used could not be made
exactly equally spaced although we have been talking
as if they were. The display was carefully calibrated,
however, and the discrete levels chosen to make the
calibrated luminances as close as possible to evenly
spaced. The biggest discrepancy was 0.1 ft-L which is not
big enough to affect any of the conclusions presented
below,

Further details of the equipment are given in Sutter
et al. {1989),

Procedure

The subject initiated each trial by pressing a button.
A fixation mark (a blue X) appeared in the center of the
screen for 1 sec before the pattern onset. After each trial,
the subject rated the degree of perceived segregation on
a scale from 0 to 4. They were instructed that 0 meant
that the three regions of the pattern were not distinguish-
able from each other without scrutiny, and 4 meant that
the three regions were very distinct and that segregation
was “immediate.” Subjects wrote their ratings on a form
supplied for that purpose.*

There are two experiments reported below. Each
experiment used ten subjects for one session each. Exper-
iment 1 involved 96 patterns. Experiment 2 involved 66
patterns, Each subject rated each patiern five times in a
session.

Further details of the instructions to the subject and
the rating procedure are given in Sutter e: af, (1989).

SIMPLE-MODEL PREDICTIONS

Constant-difference series of patterns are of particular
interest because models of texture segregation involving
linear, spatial-frequency channels (in particular, our
simple model) make simple predictions for such series.
The predictions from our simple model are shown in
Fig. 7. Contrast-ratic angle is given on the horizontal
axis. Each curve connects the points for patterns in
a constant-difference series (patterns on an L, — L, =
constani line in the diagram of Fig. 5). And the model’s
predicted value of the overall difference D (which is
assumed to be monotonic with the observer's rating in
the experiment) is given on the vertical axis. The predic-
tions shown in Fig. 7 are for exponents of 2 in both the
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FIGURE 7. Predictions of the simple-channels model for patterns made from solid-square clements (left panel) or

center-surround elements (right panel). The predicted value Plotted on the vertical axis here is assumed to be monotonic with

the observers” ratings of perceived segregation. The contrast-ratio angle characterizing a pattern is plotted on the herizontal

axis. Fach curve in the figure represents patterns in a constant-difference series (indicated in terms of numbers of “steps” of
luminance in the right legend).

pooling rules, but varying these exponents makes little
difference.

As shown in Fig. 7, the simple model makes three clear
predictions for these stimuli: (i} all members of a con-
stant-difference series of patterns have approximately
the same vaiue of the overall difference D (the curves are
approximately horizontal lines in Fig. 7) and thus should
segregate to approximately the same extent; (i) the
overall difference D is approximately proportional to the
absolute value of the difference between the elements’
luminances, |L, — L,] as reflected in the even vertical
spacing of the set of surves in either panel of Fig. 7
(although the observer’s rating may not reflect this direct
proportionality since there is a monotonic transform-
ation between D and the observer’s ratings); and (iii)
patterns with solid-square elements should segregate
much more than those with center-surround eléments
{the curves are much higher in the left than in the right
pane! of Fig, 7).

The simple model makes these predictions because
the only simple channels that can signal the difference
between the checkerboard and the striped regions are
the channels sensitive to frequencies near the fundamen-
tal (e.g. the channel having receptive fields like that
sketched on the left panel of Fig, 2 and having the output
shown in the middle panel). Since the background
stimulates both the excitatory center and inhibitory
surround of these channels' receptive fields to approxi-
mately the same extent, it is only the two clement types

that matters. These two element types have identical
spatial characteristics and are spaced so that when one
type is in the receptive field center, the other is in
the surround. Thus, these receptive fields essentially
subtract the luminance of one type of element from that
of the other; that is, they respond proportionally te the
difference berween the two element types’ luminances [as
in (i) above]. Also, the average luminance across each
center-surround element approximately equals the back-
ground luminance and each element is smaller than
either the excitatory or inhibitory region of the funda-
mental channels’ receptive fields. Thus a center-surround
element has the same effect on these receptive fields
as the background has, and there is no net response
from these receptive fields either in the checked or in
the striped region. Hence the center-surround eclement
patterns are predicted to segregate little if at all [see
(iii) above],

A detgil. Given these explanations, you might wonder
why the curves in Fig. 7 are not perfectly horizontal
and why the curves for the center-surround-element
patterns are not at zero. Inspection of the computations
shows that the deviation from horizontal for both the
solid-square and the center-surround element patterns
results primarily from channels tuned to frequencies
about twice the fundamental. (For the vertically-
oriented channel of this frequency, the receptive field
is of such a size that when its center is stimulated
by a column of elements, its suround is stimulated
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by columns of inter-element spaces.) The predicted non-
zero segregation of the center-surround patterns results
not only from these channels at twice the fundamental
but also from channels tuned to the fundamental since
the average luminance aver the center-surround elements
was not quite equal to the background luminance, The
predictions shown in Fig, 7 are for exponents of 2 in
both the pooling across spatial position and the pooling
across channels. When the exponents are 1 for both, the
curves are somewhat more peaked in the center than
those shown. When the exponents are greater than two,
the curves are somewhat flatter.

Approximation

The following approximation to the actual prediction
of the simple model will be useful later. Let’s represent
by D, the overall difference predicted by the simple
model, that is, the value of D that is predicted from the
simple model and equations (1}+(3) and plotted on the
vertical axis of Fig. 7. Then, the following is approxi-
mately true for the simple model (because it is true of the
channcls at the fundamental and they dominate the
predictions—as we have just seen in Fig. 7):

DAZWA'|L|*L2|=WA’[AL1_AL2| (3)

where w, is a constant that may depend on the spatial
parameters of the pattern (e.g. center-surround vs solid-
square elements) but not on the luminances of the
elements. Notice that equation (5} incorporates directly
the first two predictions mentioned above. Prediction
(iii) is incorporated by making the constant w, much
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smaller for center-surround element patterns than for
solid-square element patterns.

Results of Experiment 1

Experiment 1 included both solid-square element and
center-surround element patterns, but it only included
subsets of the set shown in Fig. 5 (in order to be able to
intermix all the patterns we wished to compare within a
single session). It included 20 patterns made of solid-
square elements (symbols enclosed in open squares
in Fig. 5) and 26 patterns made of center-surround
clements (symbols enclosed in either squares or dia-
monds in Fig. 5). Experiment | also jncluded some other
patterns which are not described here as they vielded no
extra information. The size of the incremental-luminance
step AL in this experiment was 0.90 ft-L. Since the back-
ground was 16 ft-L, this is a step in contrast AL/L
of 5.6%. The largest contrast (4 steps) was, therefore,
22.5%.

The results from this experiment are shown in Fig. §
in the same format as the predictions in Fig. 7. (The
average across all observers and all presentations of each
stimulus is shown in this and subsequent figures, Stan-
dard error bars are omitted for visual clarity, but perusal
of the regularities in the results will make it clear that the
sampling variability is small relative to all the effects
discussed here.)

As is obvious, the results in Fig. 8 do not agree
very well with the simple model’s predictions in Fig. 7.
No monotonic transformation of the predicted curves
in Fig. 7 (no vertical expansion or contraction, even if
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done non-uniformly} will bring them into satisfactory
correspondence with the experimental results of Fig. 8.
First, many of the center-surround patterns segregate as
well as corresponding solid-square patterns. Second, the
cutves are far from being flat. Bach curve sinks dramati-
cally at its center as well as at both its ends producing
two “cars” at the one-clement-only patterns. In other
words, there is maximal segregation for the one-element-
type-only patterns with somewhat less segregation for
the opposite-sign-of-conirast patierns (in the middle of
the curves) as well as much less segregation for the same-
sign-of-contrast patterns (at the ends of the curves).
Figure 9 is an alternative view of some of the results
in Fig. 8. It shows the observers’ ratings plotied vs
the absolute value of the luminance difference | L, — L,|
for one-element-only patterns and for pure opposite-
sign-of-contrast patterns. According to the simple
model, all three curves in either panel of Fig. 9 should
be superimposed since the observer’s ratings of perceived
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FIGURE 10. Diagram of the three stages in a complex channel.

segregation should depend only on | L, — L,| for a given
set of spatial parameters (e.g. for the solid-square pat-
terns or for the center-surround patterns), If the curves
were superimposed, thus confirming the simple model,
the shape of the single curve formed by their super-
positions would reflect the shape of the monotonic
transformation F that relates the overall difference D
to the observers’ ratings. Clearly, however, the curves are
not superimposed in either panel.

COMPLEX CHANNELS

Some of the discrepancies between the simple model
predictions and the experimental results for constant-
difference series of experiments may be resolved by
replacing or supplementing the simple channels with
complex channels. As illustrated in Fig, 10 cach complex
channel has three stages: two stages of linear filters
separated by a pointwise nonlinearity that is dramatic
near zero. The nonlinearity might be a full-wave rectifi-
cation (taking the absolute value of the first filter's
output at each point in space), a half-wave rectification
(substituting zero for the negative values and leaving
the positive values untouched), or perhaps a squaring
operation (squaring the output at each point). Here we
assume a full-wave rectification but, if we assumed a
half-wave rectification, the conclusions would remain the
same. The assumptions relating the channels’ outputs to
the observer’s responses remain the same as in the simple
model,

We introduced complex channels earlier (Sutter er o,
1989}, and simple and complex channels here correspond
closely to the first- and second-order systems of Chubb
and Sperling (1988) (also Sperling, 1989; Sperling &
Chubb, 1989; Sutter, Sperling & Chubb, 1991). Others
have also suggested the use of similar calculations
in tasks like texture segregation (c.g. Robson, [980;
Grossberg & Mingolla, 1985; Fogel & Sagi, 1989). These
complex channels are more complicated than the simple
channels above in much the same way that complex
cortical cells seem to be more complicated than simple
cortical cells (e.g. Hochstein & Spitzer, 1985) although




732

the post-rectification filtering in complex cells is often
thought to be lowpass rather than bandpass. In any case,
it is premature to take this possible physiological analog
too sericusly. Others in the texture literature have used
the analogy to complex cells in a somewhat different way
(e.g. Bergen & Adelson, 1986; Landy & Bergen, 1991).
They have noted that the combination of simple linear
filters followed by spatial pooling as in equation (1)
is like the operation performed by complex cells, We
will reserve the word “complex” here, however, to refer
to a rectification-like nonlinearity imbedded between
two stages of bandpass fiftering, all of which comes
before spatial pooling {and the subsequent pooling
across channels).

A pointwise nonlinearity before a single stage of linear
filtering (rather than a pointwise nonlinearity sand-
wiched between two layers of linear filtering) works in
principle to explain many previousiy-noted failures of
simple linear channels (e.g. Peli, 1987) and, indeed, it will
explain some failures in our experiments. We will return
to this point below in the section on an early pointwise
nonlinearity. However, by itself it cannot fully explain
our present results nor those of Sutter e af. (1989) and
Malik and Perona (1990).

The complex channels needed to explain the resulis in
Figs 8 and 9 have (1) a first filter that is sensitive to
relatively high spatial frequencies (for example, the filter
in Fig. 2 right panel) and (2) a second filter, after the
rectification-type nonlinearity, that is sensitive to rela-
tively low spatial frequencies at or near the fundamental
frequency of the texture pattern. For convenience we will
call such a channel a high—low complex channel or
sometimes simply a Aigh—Jow channel. That such com-
plex channels exist is supported by evidence obtained
with other texture patterns which suggests that over the
whole population of complex channels (second-order
texture systems) the first filter’s preferred frequency
tends to be about 3 or 4 octaves higher than the second
filter’s (Sutter et al., 1991).

Figure 11 illustrates a high—low channel’s outputs to
portiens of the striped region from both opposite-sign-
of-contrast (left) and one-element-only (right) patterns.
The patterns sketched in the figure contain square
elements, but substituting center-surround elements
make little difference to the following argument. In this
example, this first-stage high spatial-frequency filter is
characterized by the small horizontal receptive field super-
imposed on the stimulus patterns (top row). This filter
responds at the appropriately-oriented edges of elements
yvielding positive and negative outputs at all element
edges. A caricature of such outputs is shown in the second
row of Fig, 11. (See Fig. 2 right panel for a more veridical
iltustration of a similar response.) These outputs are then
rectified (third row Fig. 11) leaving positive outputs
wherever there is an element edge in the original pattern.
The third stage is a filiering done at the fundamental
frequency of the texture region, and this filter is charac-
terized by the large vertical receptive field sketched on
these rectified outputs in the third row. This filter does
not respond at all in the striped region of opposite-sign-
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of-contrast patterns since both the excitatory and inhibi-
tory regions of the receptive fields are stimulated to the
same degree (as shown in the left panel of the bottom row
of Fig. 11, For the same reason, this filter alsoe does not
respond in the checkerboard region. Thus this high—low
channel cannot signal the difference between regions in
the opposite-sign-of-conirast pattern. The one-element-
only pattern produces quite a different result. The third-
stage vertical filter will respond strongly to the rectified
outpuls from the striped region of such patterns (bottom
right of Fig. 11). Tt does not, however, respond in the
checkerboard region becaunse simitar amounts of rectified
output fall into its center and surround. Thus this
high-low channel can signal the difference between
regions in one-element-only patterns. Simitarly it can
signal the difference in same-sign-of-contrast patterns
because the magnitude of the rectified outputs 1o one
element type is greater than that to the other.

High~tow complex channels might be briefly described
by saying they respond 10 low spatial-frequency arrange-
ments of high spatial-frequency elements. For those aided
by radio analogies, one might say these channels demod-
ulate the responses at high spatial-frequencies to allow
recognition of low spatial-frequency modulating signals,
as in AM radios (se¢ Sperling, 1989 for example). With
a full-wave rectification, such channels lose information
about the sign of contrast.

The empirically observed segregation of the center-
surround-element patterns (Figs 8 and 9 right panels) is
as predicted by the activity of high-low complex chan-
nels: the opposite-sign-of contrast patterns do not segre-
gate at all but the one-element-only patterns do. The
solid-square element patterns, however, act somewhat
differently: in particular, the opposite-sign-of-contrast
element types do segregate to some extent {although
substantially less than the one-element-only patterns).
Taken together, therefore, these results cannot be ex-
plaimed with just high-low complex channels.

The results are consistent with a model in which
high-low complex channels exist alongside another
kind of channel. This other kind can include: (i) simple
channels at the fundamental frequency; and/or (i) com-
plex channels whose first and third stages are both filters
at the fundamental frequency. These two types of chan-
nels are both well described by equation {1). Since they
respond very similarly to all patterns considered here, we
will not distinguish between them, referring to either or
both simply as channels at the fundamental or fundamen-
tal channels. To repeat what was said earlier, these
fundamental channels respond approximately equally 1o
all the patterns in a constant-different series, responding
well to solid-square element patterns but poorly to
center-surround element patterns, Thus, fundamental
and high-low channels acting together will, at least
qualitatively, account for the opposite-sign-of-contrast
and one-element-only results in Figs 8 and 9. Some
quantitative predictions are presented below.

Straightforward computation of such a model’s pre-
dictions is tedious and time-consuming due to the large
amount of spatial filtering involved. For the experiments
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FIGURE 11. Diagram of vulpuls from 4 complex channel's three stages 1o the striped region of opposite-sign-of-contrast and
one-element-only patterns.

described here, however, the spatial characteristics of the
patterns do not vary much (the only change being from
solid-square elements to center-surround elements).
Thus it is possible to avoid computing the outputs of the
spatial filters by using two equations that are good
approximations to the full model: equation (1) above
and another similar equation described below. In these
equations the effects of the spatial properties are incor-
porated into a constant, the value of which can be
estimated directly from the experimental results.

Approximation ro complex + simple mode!

The following equation is a good approximation to
the pooled effect of the high-low complex channéls, a

quantity we will call Dy. The number and relative
sensitivities of different channels are absorbed into the
parameter wy

Dy =wy 1AL 1AL, (6)

The parameter wy depends on the spatial parameters
of the pattern (e.g. center-surround vs solid-square
elements) but not on the luminances of the elements.
This is just like equation ¢5) for the simple channel
al the fundamental frequency except that |AL| has
replaced AL.. To see why, consider the following: the
first filter in a high—low complex channel responds to
higher harmonics, 1.e. edges in these patterns, and there-
fore responds in proportion to the edge contrast AL,
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The second-stage nontinearity then rectifies AL, to |AL|
before sending it on as an input to the third-stage
filiering. Then the output of the third stage, which is a
linear filtering done at the fundamental frequency of the
texture, will depend on its inputs, |AL,| and |AL,|, in
Just the same way that the output of a simple channel at
the fundamental depended on its inputs, AL, and AL,.

The dashed curve in each panel of Fig. 12 is a plot of
Dy vs contrast-ratio angle for one constant-difference
series. The value of wy is different for the two panels.
Each dashed curve is flat for contrast-ratio angles
> +45% or < —45°, that is, for all same sign-of-contrast
patterns and for one-element-only patterns. But as the
contrast-ratio angle gets stil! closer to 0°, the value of
Dy drops, reaching zero at a contrast-ratio-angle of ¢°
(for opposite-sign-of-contrast patterns).

Also in each panel of Fig, 12 there is a dotted curve
showing D, from equation (1), that is, the prediction
from all channels at the fundamental. The value of w,
is different for the two panels.

To predict segregation of constant-difference series
of patterns assuming there are both high-low complex
channels and channels at the fundamental, one can pool
over these two subgroups of channels rather than pool-
ing over individual channels [see equation (4)]. This
yields

Dy, 5= (D4 +Dh)F @
where %’ is the exponent for pooling across channels,
D, . p is the predicted overall difference, and, as before,

Dy =w, |AL — AL,|
Dg = wy [|AL| — AL

Then observers’ ratings are presumed to be a monotonic
function of the overall difference D, , 5.

In a full model involving all possible complex and/or
simple channels, there are channels other than the
fundamental and high-low channels. For example, there
would be complex channels in which both stages of

filtering are tuned to frequencies higher than the funda-
mental. Until one has done more computations, it is not
clear that these other channels can be completely ignored
as we are doing here. But qualitative arguments and
some calculations suggest that their effects should be a
good deal sialler than the effects of these two kinds of
channel.

The value of w,, the weighting constant on the
fundamental channels, is expected to be higher for
solid-square element patterns than for center-surround
element patterns since the latter have little energy at the
fundamental. The value of wy, the weighting constant
for the high-low complex channels, could be quite high
for both kinds of patterns, although not necessarily
identical. The values for the left and right panels of
Fig. 12 were chosen accordingly to make the left panel
more appropriate for solid-square element patterns and
the right panel for center-surround element patierns.
The solid curve in each panel in Fig. 12 shows the
predictions from equation (7) using an exponent & = 2.
Naotice that, while these predicted curves are rather like
the experimental results in the region from —45° to
+45%, these predicted curves are flat for all angles
outside that region (for same-sign-of-contrast patterns).
This flatness—which is quite unlike the experimental
results shown in Fig. 8&—will occur in all predictions
from this simple + complex model regardless of the
values of w,, wg, and &’. Before further discussing this
discrepancy between the complex + simple channels
model and the experimental results, let us lock at results
from a second experiment, which explored a wider range
of same-sign-of-contrast patterns and thus allows this
discrepancy to appear in more detail.

Results of Experiment 2

Experiment 2 included only solid-square element pat-
terns in order to allow more stimuli and thus a wider
range of same-sign-of-contrast angles (angles further
toward —90° or +90°}. The set of stimuli was like that
in Fig. 5 except it contained 5 AL steps rather than 4
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steps and thus was made up of 66 patterns. The size of
the incremental-luminance step AL in this experiment
was 0.75ft-L. Since the background was 16 fi-L, this
is a step in contrast AL/L of 4.7%. The largest contrast
(5 steps) was, therefore, 23.4%.

The results from Experiment 2 are shown in Figs i3
and 14. Like the results of Experiment 1, they show
maximal segregation for the one-element-only patterns.
They also show clearly that same-sign-of-contrast
patierns segregate much less well than the other types.
Indeed, the curves for constant-difference series plotted
against contrast-ratio angle sink dramatically at their
ends with different curves actually converging (Fig, 13).
In other words, for the same-sign-of-contrast patterns
where both elements’ luminances are rather far from the
background, only the ratio of the contrasts in the two
element types matters for segregation; the difference
between the luminances and the absolute values of the
luminances does not matter. Such a result is not pre-
dicted either by the simple-channels model or by the
simple-plus-complex-channels model (as was shown in
Figs 7 and 12).

THE INTENSITY-DEPENDENT NONLINEARITY—
TWO CANDIDATE PROCESSES

Thus, a second nonlinear process is needed to explain
the convergence of the curves for same-sign-of-contrast
patterns. (4 priori, one might find that, in adding a
second nonlinear process, the first becomes unnecessary,
In the present case, however, the complex-channels
remain essential, as will be described further below.)
When a peneral name is needed, we will call this the
intensity-dependent nonlinearity and contrast it with a
spatial nondinearity like that embedied in the complex
channels, We will discuss two possible candidates for this
intensity-dependent nonlinearity, either of which can
account for the results from this study: (i) a local {point-
wise) nonlinearity occurring early (before the channels);
and (i) a normalization process operating among the
channels, perhaps a result of intracortical inhibition.

EXP, 2
SQUARE ELEMENTS
L2-LT In 2L
5.28
—r— 45
A5
—0— 3
.28
—Cc— 15

Rated segregation

0.75

M T e
-90 -45 0 949

45
Contrast-ratio angle

FIGURE 13. Results from Experimeni 2, which only used patterns

having solid-square elements. Conventions as in Fig. 8.
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FIGURE 14. Some results from Experiment 2 plotted as a function

of luminance difference. The results shown are for the opposite-sign-of-

contrast (equal magnitude), the two one-glement-only cases, and two

cases of same-sign-of-contrast (those where the contrast-ratio was 2,
and the contrast-ratio-angles +/— 72 deg).

An early local nonfinearity—one possibility

The decrease in segregation for same-sign-of-contrast
patterns where.the elements are far from the background
might result from an early local nonlincarity preceding
the channels, that is, presuming the channels are cortical,
from something happening in the retina or LGN. Sup-
pose, for example, as iliustrated in Fig. 15, that early
local light adaptation processes readjust the operating
range of the visual systemn to be centered on the recent
mean luminance—the background luminance in this
case, This maximizes discriminability between lumi-
nances near that level and sacrifices discriminability
for luminances far away. (Recent reviews of light adap-
tation appear in Hood & Finkelstein, 1986; Shapley &
Enroth-Cugell, 1985; Walraven, Enroth-Cugell, Hood,
MacLeod & Schnapf, 1989). Indicated on the horizontal
axis of Fig, 15 are five pairs of luminances corresponding
to five different patterns in a constant-difference series.

Output

.

Backgreund Lavei

i

L]
Same Sign of Contrast : Both BIm Boih Bright
One Elsmend Only : One Oim  One Bright
Opposilg Sign of Contrast : Dim-Bright

Input to local nonlinearlty

FIGURE 15. Diagram of early local nonlinearity acting between the
luminance and the input 10 the simple or complex channels.




736

Vertical lines extend from these luminances up to the
nonlinear curve, and then horizonta! lines extend over to
the vertical axis to show the outputs of the carly local
nonlinearity for each pair of uminances. Note that the
difference between the two outputs for the same-sign-
of-contrast patterns is smaller than that for the one-
element-type-omnly patterns, which in turn is smaller than
that for the opposite-sign-of-contrast patterns. As the
luminances get further from the background in either
direction, in short, this difference gets smaller.

To calculate approximale predictions from such an
early local nonlinearity applied before multiple channels
Is quite easy. One uses equations (5) and {6} above, but
substitutes the outputs of an early local pointwise non-
linearity [which will be called r(AL, )] for the incremental
luminances in those equations. The resulting overall
differences will be called D,. and Dy, from the funda-
mental and the high-low complex channels, respectively,
to distinguish them from the corresponding quantities in
equations (5) and (6):

Dyo=wy-|r(AL)) ~ r(AL)]
DB.sz-Ilr(ALEH —“'(ALz)H-

®
9]
Next combine the two overall differences as in equation
(7) but now call the result D\, where ELN stands for
early local nonlinearity:

Dery = (D% + DE. (10)

A monotonic transformation F is then applied to
Dy . Figure 16 illustrates this process. Its left panel
shows some predictions from equation (10) plotted
against contrast-ratio angle. Note that, as a result of the
early local nonlinearity, the ends of the curves drop and
different curves converge. As a result of the action of
comptex channels there are peaks in the curves at
one-element-only patterns. The middle panel of Fig. 16
shows the monotonic transformation F applied to the
Dgpx values in order to produce the displayed fit to the
experimental results. An cquation for the family of
monotonic transformations we considered is given in
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the Appendix. It is a 4-parameter family, always having
an S-shape. The right panel of Fig. 16 shows Dy
transformed by the monotonic transformation F from
the middle panet and ploited against contrast-ratio-angle
in order to be compared to the experimental results.

The two top panels in Fig, 17 show predictions
F(Dy ) with parameters chosen to give a good fit to the
experimental results using solid-square element patterns
(left) and center-surround elements {right). The method
of choosing the parameters is described in the Appendix.
As visual comparison of these predictions with the
experimental results indicates, these predictions fit the
data guite well. More formaily, for the parameter values
used in the top of Fig. 17, the correlation r? between the
values F(Dg ) and the average observer ratings was
0.89, 0.93 and 0.98 for the solid-square stimuli in
Experiment 1, the center-surround stimuli in Experiment
1, and the solid-square stimuli in Experiment 2, respect-
ively. Allowing the parameter values to be different for
the three different data sets, the highest 2 values that
appeared in our crude grid searches were 0.92, 0.93 and
(.99 for the three data sets, respectively.

The pooling exponent k* was 1.0 for the predictions
in both panels of Fig. 17; the ratio of w, (the weight on
the channels at the fundamental) to wy (the wei ght of the
high-low complex channels) was | for the solid-square
clements and 0.4 for the center-surround elements,
Figure 18 illustrates the early local nonlinearity used for
Fig. 17. These parameter values should not be overinter-
preted, however, as there are strong interactions among
parameters and a wide range of values for any one
Parameter can work well given the appropriate changes
in values of other parameters. Some of these interactions
are discussed in the Appendix.

It is interesting to consider just what visual process
thig carly local nonlinearity might cofrrespond to. That
the experimental results plotted against contrast-ratio
angle curves in Fig, I3 converge at the ends means that
perceived segregation depends primarily on contrast
ratio once both elements’ luminances are far above or far
below the mean luminance. Fhis in turn means that the
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o 1 34 —— 7
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2 i g 2 o 4
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1
2 o ] ] .\ i —e—
&* 0.01 0.00 002 0.04 0,06 ——
Predlcted value -- Deln
0.00 T v n 0 T ¥ Ty
-90 =45 0 45 94Q -89 45 a 45 990

Contrast-ratle angle
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FIGURE 16. Some predicticns from equation {10) for Dy, are shown in the left panel plotted against contrast-ratio angle.
The kind of monotonic transformations £ betweer ihe predicted values and the observer’s ratings that was allowed in fitting

the models’ predictions to observers’ ratings is illustrated in the middle panel. The right pane]

replets the points in the left

panel, this time with F(Dg ) on the vertical axis. The right panel is shown again in the top left of Fig. 17,
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FIGURE 17, Predictions of models containing complex channels and either an early local nonlinearity (top half) or

normalization amang channels (bottom half). A monotonic transformation of the predicted overall difference between regions

is plotted on the vertical axis. The parameter values for the predictions shown in the left (respectively right) panels were chosen

to praduce a good fit to the observers’ ratings for selid-square (respectively center-surround) elements. The upper left panel
repeats the right panel of Fig, 16. See text and Section 1 of the Appendix for further details.

carly local nonlinearity needs to be approximaiely a
logarithmic function of AL for vatues far from the
background luminance. The heavy solid curve in Fig, 18
shows the early local nonlinearity used for the predic-
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FIGURE 18, Several possible early-local transformation between the
luminance at each spatial position and the input at each spatial
position to the channels,

tions in Fig. 17 top, and the dotted curves show alterna-
tives that were clearly worse. Notice that the heavy solid
curve is already clearly compressing at 18§ or 14 ft-L,
which—on a background of 16 ft-L—is a contrast of
13%. The light adaptation processes in the retina do
not seem to show this much compression (e.g. in the
model of Sperling & Sondhi, 1968; also see reviews of
light adaptation referenced above), but some M-cells in
the lateral geniculate nucleus might (¢.g. Derrington &
Lennie, 1984; Sclar, Maunsell & Lennie, 1990; Shapley
& Perry, 1986; Spekreijse, van Norren & van den Berg,
1971). Thus, LGN M-ceils are the most likely substrate
currently for the early local nonlinearity discussed here,
if such a nonlinearity is, in fact, the correct explanation
of these results.

However, the next section examines a nonlinearity
that occurs in V1 itself and might also explain the
convergence of the curves for the same-sign-of-contrast
patterns.

Normalization across channels (intracortical inhibitiony—
another possibility

The relationship between stimulus contrast and corti-
cal cells” responses is known to be very compressive,
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a good deal more compressive than at earlier stages in
the visual system. Some cortical cells show compression
at 10 or 20% contrast (e.g. Atbrecht & Hamiiton,
1982; Ohzawa, Sclar & Freeman, 1982; Sclar, Lennie &
DePriest, 1989; Sclar ez al., 1990). Further, neurophysi-
ological recordings from cortical cells preduce results
that are often described as cross-orientation or cross-
frequency inhibition (e.g. Bonds, 1989; DeValois &
Tootell, 1983; Morrone, Burr & Maffei, 1982). As has
been recently pointed out (Robson, 1988a,b; Heeger &
Adelson, 1989; Heeger, 1991), both the intracortical
inhibition and the response compression may result from
the same process, a normalization process which keeps
the total response from some set of neurons at or below
a ceiling, It accomplishes this by doing something like
dividing (normalizing) the response of each individual
neuron by the total response from a set of neurons (once
thresholds have been exceeded). Heeger (1931) shows a
possible wiring diagram for such a process and compares
its predictions to data from cat striate cortex cells,
Normalization-type processes have also been used in
models of human texture segregation or other visual
psychophysical tasks (e.g. Bergen & Landy, 1991;
Grossberg, 1987; Grossberg & Mingolla, 1985; Heeger,
1987; Lubin, 1989; Lubin & Nachmias, 1990). A differ-
ent but probably closely-related model of intracortical
inhibition has been used to explain some other texture-
segregation results (Malik & Perona, 1990),

For normalization to predict our results, we need 1o
assume that the set of cortical neurons over which
normalization occurs contains neurons with a wide
range of different peak spatial frequencies. In fact,
we will assume that the normalization occurs over all
neurons having receptive fields that overlap in spatial
position with the neuron in question no matter what
spatial frequency and orientation they are most sensitive
to. [Robson’s (1988a,b) ideas would limit the normaliza-
tion set more, but that limit has little effect in the
following argument |

Notice {e.g. in Fig. 6) that the total amount of contrast
at element cdges (¢.g. |AL,|+ |AL,|) is greater for the
same-sign-of-contrast patterns than for the other pat-
terns in a constant-difference series. This is true in both
the checkerboard and striped regions of the pattern. The
greater contrast at element edges is reflected in a larger
amplitude of higher-harmonics in the Fourier transform
of the stimulus.

Consider the effect of between-pattern differences in
higher-harmonic amplitude on a group of channels we
will call high-only channels. High-only channels include
(i) simple channels tuned to higher harmonics and/or {ii)
complex channels having both filters tuned to higher
harmonics. Since these channels respond only to the
edges of the individual elements and therefore respond
1o the same degree in the checkerboard and striped
regions, none of these high-only channels can contribute
to perceived region segregation. Because the contrast at
element edges is greater in the same-sign-of-contrast
patterns, however, the high-only channels’ responses in
both the checked and the striped regions are larger 10

same-sign-of-contrast patterns than to the other patterns
in a constant-difference series. These larger responses
from the high-only channels enter into the denominator
of the normalization process not only for neurons in the
high-only channels but also for neurons in other chan-
nets. Their entry produces smatler post-normalization
responses to the same-sign-of-contrast patterns than to
the other patterns. These smaller post-normalization
responses occur in both the checkerboard and striped
regions and in all channels, including the channels that
do contribute to segregation of texture regians, namely
the fundamental and high-low channels. These smaller
responses in both regions lead in turn to smaller within-
channel differences between the regions and therefore to
less predicted segregation (for the same sign-of-contrast
patterns relative to the other patterns).

In short, the high-only channels respond very similarly
to both the striped and the checkerboard texture regions,
and, therefore, these high-only channeis do not contrib-
ute to region segregation. These high-only channels do,
however, enter into the normalization process and
thereby decrease the effectiveness of the fundamental
and high-low channels that do contribute to region
segregation. And these high-only channels are activated
more by same-sign-of-contrast parterns than by the
others in a constant-difference series.

To write an equation representing the approximate
predictions of the normalization model, we need an
expression for the responses of the high-only channels in
the checked (or striped) region. Since these high-only
channels respond primarily at the edges of elements and
in proportion to the laminance increments at the edges,
their response is in approximate proportion to AL, or
AL, depending on clement type. Since the two element
types occur in equal proportions in each region, the
spatially-pooled response of a high-only channel in
either region wili depend on spatial pooling across
responses to both element types in equal proportions
(that is, across both AL, and AL,) in equal proportions.
Thus R,, the spatially-pooled regional responses of the
high-only channels (in either the checked or the striped
region), cught to be approximately equal to:

Ry=wy (1AL |* + |AL,| %) (11

where & is the exponent describing spatial pocling as in
equation (1).

The curves in Fig. 19 show predictions from equation
(11) for several values of k. To demonstrate that this is
indeed a good approximation, the points in Fig. 19 show
numerical calculations of the spatially-pooled responses
from one high-only channel. As expected, the high-only
channeis’ spatially-pooled response increases precipi-
tously as the contrast-ratio angle gets smaller than
—45° or larger than +45°, that is, as one moves from
on¢-glement-only patterns out to same-sign-of-contrast
patterns further and further from the background.

To finish the prediction of perceived texture segre-
gation, one puts the spatially-pooled regional responses
of these #igh-only channels into a denominator that
normalizes the responses of all the channels: one does
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FIGURE 9. Spatially pooled responses of the high-only

channels to a constant-difference series of patterns having

solid-square elements (left panel) or center-surround elements (right panel). The curves show values calculated using equation
{11}, The symbols show values computed from full calculations. For these full caleulations, the channel was a sumple linear
channel of vertical orientation with peak sensitivity at approx. 11 times the fundamental frequency of the texture regions.
The spatial pooling was done over the checked region using equation (1). Very similar resulis were obtained for all other
high-spatial-frequency channels and for the striped region. The symbols marked & = oo show the maxima of the absolute values
of the outputs divided by 2 for convenience. The values of w, used in equation (11} were chosen separately for each curve.

not put it into the numerator {reflecting the fact that the
high-low channels do not respond differentiatly in the
two texture regions). As it turns out (interested readers
can see the derivation in the appendix), the same ex-
pressions D, and Dy that we used before go into both
the numerator and denominator of the normalization
equation to represent the action of the fundamental
and high-low channels, For the high-only channels
the spatiaily-pooled regional response R, goes into the
denominator, Thus,

(DX + DE)®
o+ (DX + DX + RV

(12)

Dyorm =
where
Dy =w,-|AL — AL,]
Dy =wy||AL |~ |AL||

Ry=wy-(JAL|* + AL, %)

and ¢ is a constant which, among other things, serves to
keep the expression from going to infinity as the contrast
in the pattern is reduced to zero. Note that when the
contrast of both elements is low enough, this equation
becomes equivalent to equation (7) above except that the
weights have been divided by ¢. The maxima) value of
this equation is 1.0.

The bottom panels of Fig. 17 shows some
maonotonically-transformed predictions from equation
(12) where the parameters were chosen to predict solid-
square element results (left panel) and center-surround
element results (right panel). These predictions again fit
the data very well, as well or better than those in Fig. 17
top from the early local nonlinearity. More formally, the
correfation #* between the monotonically-transformed
predicted values and the average ratings was 0.97, 0.96
and 0.97 for the solid-square stimuli in Experiment 1, the
center-surround stimuli in Experiment 1, and the solid-

square stimuli in Experiment 2, respectively. Allowing
the parameter values to be different for the three differ-
ent data sets, the highest r? values that appeared in our
crude grid searches were (.97, 0.96 and 0.99 for the three
data sets.

The values used in both panels of Fig. 17 for both
pooling exponents k" and k were 1.0. The ratic of w, (the
high-only channels’ weight) to o (the constant in the
denominator of the normalization equation) was set at
L.0. The ratio of w, (the weight on the channels at the
fundamental) to wy {the weight of the high-low complex
channels) was 3 for the solid-square elements and I
for the center-surround elements, Again, however, these
parameter values should not be overinterpreted as there
are strong interactions among parameters and a wide
range of values of any one parameter ecan wark well
given the appropriate changes in values of other par-
ameters. More information about the fits and the fitting
procedure is given in the Appendix.

Thus, either an early, local compressive nonlinearity
oceurring before the level of the spatial-frequency chan-
nels themselves or a normalization network at the level
of the channels could account satisfactorily for the
results seen in these experiments. The fit of the normal-
ization predictions was slightly better in general, but it
would be unwise to take this superiority very seriously
at this point. The fact that we have not done a very
refined grid search and that we have used approxi-
mations rather than complete models makes small differ-
ence in fit unconvincing,

DISCUSSION

Although the effortless perceptual segregation of
different regions in the visual field is well accounted for
by spatial-frequency and orientation channels acting in
a linear manner, there is clear nonlinear behavior as well.
The nonlinear behavior exhibited in our experiments can
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probably be explained by nonlinear processes known
to exist at relatively low levels in the visual pathways:
(1) a rectification nonlinearity or some other simifar
nonlinearity that occurs between two stages of lincar
filtering—this linear-nonlinear-linear sequence is quite
like that used to describe complex cell behavior in the
cortical area V1; (2) an intensity-dependent nonlinearity
such that response as a function of contrast shows
dramatic compression occurring at contrasts far less
than 25%, Neither of these types by itself explains our
results,

The intensity-dependent nonlinear behavior in our
experimental results can be quantitatively predicted
cither by an early local nonlinearity occurring before
the channels or by normalization among the channels
(perhaps intracortical inhibition). As mentioned above,
to decide between these processes on the basis of their
predictions for the experimental results reported here is
unreasonable. To decide between them on the basis of
plausible physiological substrates is premature. How-
ever, the processes differ in other properties not tested by
the experimental results reported here (e.g. their spatial
characteristics), and further psychophysical experimenis
should be able to decide between them. OFf course, both
processes may operate.

Future experimental and theoretical work should also
be able to clarify the relationship of the nonlinear
processes suggested here to the nonlinear processes that
have been suggested by other work on texture segre-
gation, e.g. the normalized opponency in the model of
Bergen and Landy (1991); the inhibition in the model
of Malik and Perona (1990), the thresholding and
suggestion of still further more complicated nontineari-
ties in Victor and Conte (1987, 1989a,b), the normaliza-
tion across spatial position in Guernsey and Browse
{1989} and the two stages of filtering with an embedded
rectification in Sagi (1990) that bear at least superficial
Tesemblance to our complex channels although may
differ in important ways.

Notice that one might interpret the normalization
equation (12) as a formulation of “masking” of the
responses at the fundamental frequency by responses to
the higher harmonics. It is not clear that this iast
sentence has much content but it does sugpest searching
for analogies between these psychophysical results and
others commonly called “masking.” Indeed, inhibition
amaong spatial-frequency and orientation-selective chan-
nels has several times been proposed as the physiological
substrate for masking and adaptation effects (sce brief
review in section 3.7 and 3.8 of Graham, 1989b).

Although superior segregation of opposite-sign-of-
vontrast relative to same-sign-of-contrast patterns has
sometimes been taken as evidence for the existence of
separate om and off feature maps or channels {e.g. Beck
et al., 1987), these results can be explained, as we
did here, without such separate channels. (There are
definitely on and off neurons but they need not be
separated into different channels. Indeed, they might
be used together to form one linear channel.) On the
other hand, the existence of such scparate or and off
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channels could easily be incorporated into the approach
here by using a half-rectification either in the complex
channel or in the spatial pooling stage. As you can
probably imagine, a region containing only light-
centered center-surround elements segregates rather well
from one containing only dark-centered center-surround
elements. (See the similar demonstration and accom-
panying discussion in Malik & Perona, 1990.) This
demonstration does suggest that on and off neurons
might be separated into different channels. It turns out
to be quite difficult, however, to rule out the possibifity
that both kinds of neurong are in the same low-level
channel if you allow higher stages of processing to
include processes like looking for the maximum or the
minimum. In any case, the experiments reported here
certainly cannot decide whether or not there are separate
on and off channels.

In summary, a great deal (perhaps all) of perceived
region or texture segregation can be quantitatively
accounted for by models involving only visual processes
known to occur at realtively low levels in the visual
system, Perhaps region segregation is a cheap and quick
computation done early in visual processing o ease the
overload on higher processes by delimiting regions
within which computations can be sensibly concentrated.
Of course, higher-level processes may turn out to play a
substantial role in region segregation but such processes
should not be invoked until they are meeded (cf. Beck
et al., 1989; Bergen, 1992).
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APPENDIX
Some Details of the Models and Fiis
Section I. Details of fitting models 10 data

Although counting free parameters is a1 best un approximate
description of the constraints in the data-fitting process, it often gives
some fee] for those constraints. The prediction embodied in equation
(10) for the early-local nonlinearnity has the same 3 free parameters (%,
W, and wy) as in the carlier prediction of equation (7) plus the several
free parameters that go into the description of the early-local trans-
formation r(AL). For the latter, we did not specify a parametrized
form for r (AL}, but rather simply choose 4 few examples, those shown
in Fig. 12 plus two other more extreme ones. {The nonlinearity was
assumed (o be odd-symmetric around (he background luminance.)
Thus we certainly might have failed to find the best-fitting early-local
nonlingarity. This procedure for choosing the early-local nomnlinearity
could be described as having at maximum 10 free paramelers, the
10 values of r(AL) for different AL, or at minimum 1 parameter
(the parameter actually used in the program), namely a parameter
indexing which of the several possible garly-local nonlinearities shown
in Fig. 18 was chosen. Something intermediate is probably the best
description.

Since the observer's response is assumed 1o be a monoetonic function
F of this predicted overall difference, there are also as many free
parameters as were used in specifying this monotonic function, {in the
fits shown here we used four such parameters as deseribed below.)

In fitting the normalization model's prediction. in equation (12) to
the data, we did a crude search cver the following parameters: W, Wy,
wa» o and &', The prediction embodied in equation (12} has the same
3 free parameters (k°, w, and wg) as in the earlier simple-channels
model prediction of equation (7} plus the 3 parameters used in the
tiormalization process (k, w, and o) although, in fact, we only tried
one value for the spatial pocling exponent (&£ = 1). Again, since the
observer’s response is assumed (o be 3 monotonic function £ of this
predicted overall difference, there are also as many free parameters as
were used in specifying this monotonie function (4 in the fits shown
bere as described below).

Both for practical reasons and to sec if there were systemalic
differences between data sets, we did the fits for three sets of data
separately: (i) the solid-squares lrom Experiment 1, {ii) the center
sutround elements from Experiment {; and (i) all the 66 stimuli
(which were all solid-square element patterns) from Experiment 2.
There were systematic differences among the best fits (o all three data
sets {which differed [rom one another cither in type of element or in
the particular sel of contrast-ratio angles and luminance differences
chosen), but describing these differences at this point in detail does not
seern worth the space as it will 1ake more experiments before we
understand the significance (if any other than sampling error) of these
systematic differences. (A brief description of one of these is given in
the next patagraph.) The predictions shown in Fig. 17 are an informal
compromise among those that, in three crude grid searches, produced
good fits to the three data sets a5 measured both by rZand the appear-
ance of plots like those in Fig. 17. (The best predictions found for the
results frotm Experiment 2 alone are shown in Graham, 1931.)

For solid-square element patlerns, the predictions were not very
sensitive {o the value of the exponeatial for pooling across channeis
{«') for either modei, and, to the extent they are sensitive, & = | {the
value used in the fits shown here) was actually least good. For
cenler-surround element patierns, however, the fits were quite sensitive
to the value of &', and a value of &' = | was much better than higher
values,

There are strong interactions between the parameters involved in
making any of the fits. Trivially, making all the weights w larger by
some factor or making the outputs of the early-local nonlinearity larger
by some factor will be cxactly compensated by making ¢ [in the
monotonic transformation of equation (A1) described below] smaller
by that factor, Of particular note for the normalization model, it is
generally only the ratio of w, to o that matters rather than the values
of either one.

The family of monotunic junctions ond the frting procedure. The
observer's rating of perceived segregation s assumed (o equal F(D)
where F is a monotonic function otherwise unspecified and D js either
Deyy, [equation (7)] or Dygea [equation (12)]. Ideally for our purposes
this value would have been computed from the best-fitting function F
of all possible monetonic functions. For practical purposes, however,
we had Lo limit ourselves to monotenic funcions that can be described
in simple equations.

In the fits shown here, we assumed that F was a member of a
particular 4-parameter family of functions. (This family is a slight
generalization of the Weibull distribution function, the Quick psycho-
metric function, and the asymplotic regression function. It was picked
terely because it contains S-shaped functions that can be varied in
slope, herizontal position, minimal value at, and maximum.) The
particular algebraic form we ysed was:

Fix)=a'[b -2 forx >0 {Al)

The Nelder-Meade algorithm (see, e.g. Press, Flannery, Teukolsky &
Vetterling, 1986) as instantiated in MATLAB {available from The
Math Works Inc., 21 Eliot Street, South Natrick, MA 01760, US.A)
was used to find the 4 parameters for F producing the smallest
mean-square error (over all the stimuli in a given set) between F(D)
and the average ratings of the observers.

Note that using the average ralings of the observers as we did is not
ideal. The variance of average ratings near {0 and 4 is less than for those
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mtermediate. It would presumably be betler Lo lransform the ratings
first onto a scale where the variance is close to constant before using
4 mean-square efror criterion. Then ratings near 4 and O in the
experimental results would matter more in the it of the model. In the
case shown in Fig. 16, for example, which altempts 1o fit the data in
Fig. 13, the best-fitling monotonic transformation would not COINpress
the predictions at the higher end as much as the translarmation shown
in Fig. 16, does, At this point in the investigation, bowewver, such
nicelies produce much more work than benefit.

It may be of some interest to point out that, in the fits shown in
Fig. 17, the value of the exponent o in the monolenic transformation
of equation (A1) was between 2.4 and 3.4, and the minimum vaiue of
the function F {which equals & & in the above formula) varied from
0.024 to 0.35 while the maximum value {which cquals ab + o in the
above formula) varied from about 3.4 to 4.4, The value of ¢ directly
depends on the values of the weights in the model. For the early-local-
nonlinearity (respectively normalization) mode!, when W, was equal to
1 for the solid-square case, then ¢ varied from 0.01 to 0,03 (respectively
0.13-0.23).

Section 2. Deriving the normatization prediction w equation (12)

First, we consider some properties of the unnormalized {open-loop,
before-normalization) responses of the three types of channels under
consideration (fundamental, high-low, and high-only). Second, we
present the equations giving the with-normalization {closed-loop,
after-normalization) responses of those chaoncls in terms of the
unnermalized respenses, Thirdly, we simplify the with-normalization
equations using the properties of the unnormalized responses. We wiil
continue to use the symbol R for the unnormalized (open-loop,
before-normalization) regional esponses and the symbol D for the
within-channe! differences between unnarmalized regional responses;
we will use R** and D** for (he corresponding quantities with
normalization {closed loop, after-normalization}

Some properties of the wnnormalized responses. In the following
derivation we consider, of all the orientations of fundamental channels
lindicated by subscript 4) and high-low channels (indicared by
subscript B), only those that are verticalty-oriented. These channels
contribute 10 texiure segregation because they respond very well in the
striped region of the pattern and not at all in the checkerboard region.

. To a very good first approximation, the vertically-oriented A and B
type channels have the following spatially pooled responses:
Ralch) =0 and A (s)»0 (A2)

(A3)

Thus the within-channel difference equals the regional response in the
striped region, that is:

Rylch) =0 and Ry(st)»0.

Dy=R, 50 and D, = Rs0. (Ad)

It is easy 1o verify that the derivation below for these vertically-
oriented channets holds also for the obliguely-orientad channels except
that the spatially pooled responses in the striped region will be zcro
while those in the checkerboard region are considerable, The honzon-
taliy-oriented fundamental and high-low channcls do not contribute
substantially to texture segregation and thus can be ignored here or else
considered as grouped with the high-only channels. (We are alse
ignoring many other varieties of intermediate channels. Doing so is
probably justified because these other varieties either act like one of the
varieties we are considering or should contribute 1o segregation much
less thap they do.)

For the high-only channels (of any oricntation), the regional re-
Sponscs are the same for the two regions:

Ryst) = Ry(ch) = Ry . (A%

The equations for the with-normatization responses. We will compute
the result of the normalization process by an equation in which the

nuemerator is the unnormalized response of the channel under consider-
ation and the denominator is the total of the unnormalized responses
from all the channels over which the normalization oceurs (plus a
parameter o). Heeger (1991) presents this equation as that for a single
cell in the context of a feedback wiring diagram of cortical cells, We
could start by presenting it here for single neurons in the appropriate
channel and then explicitly doing the spatial pooling over the region
in question, but the necessary terminology seems to cbscure more than
it reveals. Thus, for brevity's sake, we skip the single neuron stage.
Here we also generalize from Heeger's assumption of a lincar pooling
across channels (an exponent of 1.0) to a family of summations
characterized by different expenents & for pooling across channels.
(Note, however, that Heeger does explicitly contrast rectification 10
squaring in the complex cell and opts for squaring, This squaring in
the middle of the complex channels followed by an exponent of { at
the pooling-across-channels stage would seem to have many of the
properties of rectification in the middle of the complex channels
followed by an cxponent of 2 at the pooling-across-channels stage.)
Then the normalization equations become:

RIGt) = Ratst , 1 (A6)
7+ (RS 4 Ryfst) + Ry(st)')s
Ryt = Ryls) (A7)

) y . .
G+ (Ry(st) + Ryfst) + Ry(sty )v
The two equations for the regional responses in the checkerboard
region, Rich) and Ry (ch), are exactly like those for the striped region
except that ch is substituted for st
The with-normalization within-channel differences are given by,

DY =|R.(chy — Ryt (A8)
DY =|Ry(ch) — Rysi)|. (A9

Finally, to compute the predicted with-normalization overall differ-
ence, Dy, One pools together these within-channel differences over
ull channels. Since the within-channel differences for channels olher
than those of the A or B type arc being ignored (i.c. being assumed
approximately equal to zero):

Dyomw = [(DXF +(Dy¥ P, (A10)

The observer's rating is assumed to be a monotonic function of this
overall difference Dy gpn, -

Stmplifping the cquations for the with-normatization responses. Now
we cun simplily equations for the normalized spatially pooled regional
responses A** by using equations (A2) and (A3) to show:

Ry(chy=00 and Ry (ch) =00 (All)

Combining this equation (Al 1] with equations (A8) and tAY), gives:

(DO =IR(st)] and (Dyy=|RI(0| (A12)
Also by equation (A4) substituted into (AG):
D
Ry = A o {A13)
o +(D:;+Di‘; +R5)‘

And by equation (A3} substituted into equation (A7), the expression
for RE{st) has the same dencminator as the above but the numerator
is Dy

Substituting into equation (A10), the expressions for DY and D}
obtained by combining equations (A12) and (A3} gives the ollowing
which s identical to equation (12) presented in the main text:

- P
(D4 + DE
Dyorn = ﬁ—--"—-——-.") —. (Al4)
o +(DY + DY 4+ REY




