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Let 8 > 0 be a measure of the average step size of a stochastic process
‘gpu“’ }nai®. Conditions are given under which . is approximately normally
igtributed when n is large and # is small. Thia result is applied to & number
of learning models where # is a learning rate parameter a..udp 2 iz the prob-
ability that the subject makes a certain response on the nth experimental
trigl. Both linear and stimulus sampling models are considered.

1. Introduction

Consider a learning experiment where response alternatives 4, and 4,
are available to the subject on each of a sequence of trials, and, on any trial,
response A, is followed by outcome O;; , presumed to be reinforeing to 4; ,
with probability «,; . It iz assumed that

Ty > 0 and 7 > O

which implies, in the learning models considered below, that a subject con-
tinues to choose both alternatives throughout the experiment. Lei p, be the
probability that a subject will echoose 4, on trial », conditional upon past
events (directly observable or hypothetical) that were crucial for learning.
Mathematical learning theorists are often concerned with the asymptotic
distribution of p, as # — =. Knowledge about the predicted distribution
varies from model to model. There are interesting models for which not even
the asymptotic mean of p, is known, and, even in the few cases where formulas
are available for some of the asymptotic moments of p, , these usually give
little insight into the shape of the asymptotic distribution.

Learning models typically involve one or more parameters whose magni-
tudes are directly related to the average step size of the corresponding process
{pa}. These may be loosely described as learning rate parameters. Quite often
experimental data seem to call for small values of these parameters, so ap-
proximations to the asymptotic distribution of p, , valid when learning rates
are smell, are of interest. An approximation of this sort, applicable to a wide
variety of models, is obtained in this paper.
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Let a family of models be indexed by & single parameter 8, denote the
stochastic process corresponding to 8 by {p!"}, and suppose that the cumula-

7:

tive distribution function of p%* converges as n — @ to a distribution F PR
The main result of this paper, the central imit theorem of Section 3 {hence-
forth abbreviated CLT), implies, roughly speaking, that if (a) eertain means
of .3 — p!” are of the order of magnitude of #, and (b) there is a point
p & (0, 1) toward which the process {p!"} drifts when 8 is small, then the
nermalized distribution

Fo(87z + g) = Um Py((p, — p)0™ < x)
converges as # — 0 to & normal distribution with mean 0. (Throughout the
paper 0 will appear as a subseript on P and F rather than as & superseript
on g, in probabilities and expeetations involving the latter quantity.) A more
precise statement of the theorem requires the functions

V(p: 6) = Eﬂ[pnﬂ - Pu | Pn = 30]
and
Mip, 6) = Eil(pes — p.)* | pa = 2

which are assumed to be independent of 1, and
a,.(ﬂ) = Eﬂ[lpn+l - pn[a]'

In aceordance with (a), V(p, 8), M"*(p, #), and a'**(8) are assumed to be
O(). The condition (h) means that V(p, §) has the same sign as (o — p) when
¢ s sufficiently small, or, in view of (a), that (3/ 88)V(p, 0) is positive for
2 < pand negative for p > p. Thus p can be simply described as the unigue
root of (8/36)V(p, 0) = 0 in (0, 1). Clearly (8°/9p 86)V{(p, 0) < 0, and, by
(a), (9°/66" )M (p, 0) = 0. The expression

sl (&*/86")M(p, 0)

4 —(3"/8p 39)V(p, O)

given by CLT for the variance of the limiting normal distribution suggests
that (8°/8p 86)V (s, 0) must be assumed strictly negative, and, if the as-
ymptotic distributicn is to be non-degenerate, that (9°/68°}M (p, 0) must be
assumed strictly positive. A completely precise statement of the theorem
will be given in Bection 3 along with its proof. The preof is similar to the
proofs of the normsl convergence theorems of Norman {1966], all of which
are special cases of CLT.

Some applications of the theorem to specific learning models will be given
in Section 2 below. These results partially overlap those in Norman [1966].
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2. Some Corollaries of CLT
2.1 The Four-Operator Linear Model

The process {p,} for the general four-operator or experimenter-subject
controlled events linear mode} [Bush & Mosteller, 1955] satisfies the equation

Paes = (1 — 8:)p. + 8;;8,;

when 4. and O,; ocour on trisl ». Tt is assumed that 1 > 6,, = 0 for all 4
and j, and, in addition, that 8;; > 0 for §, so that the process {p.} has
no absorbing barriers. The distribution of p, converges asn — = to a distribu-~
tion that does not depend on p; [Norman, 1968, Theorem 3.1], but, in this
generality, even the mean of the asymptotic distribution is not known.

A one parameter subfamily of this four parameter family of models is
obtained by constraining the vector ® = (8, , 612, 62, , 833} $0 a one dimen-
sional subspace of four dimensional space. Thus for any vector ¢ = (g, ,
€12 ; Ca1 5 Caa) of constants with c;; 2 0 and ¢;; > 0 for £ 52 4, the family of
parameter-vectors © of the form © = 6C, 0 < # < 1/max,; ¢, is considered.
The eorresponding functions V(p, #) and M{(p, 8) can be written in the form

(1) Vip, 6) = 0W(p) and M(p, ) = &'N(p),
where W(p) = (0/39)V{p, 0) and N(p) = (3°/a6°}M(p, 0)/2 are quadratic
and cubic polynomials, respectively. Since |[p,¥} — p| £ # max,, Cii

e.(8) £ 0 max?, ¢,; . Now W(0) = carmay > 0 and W) = —epms < 0, and,
since it is quadratic, it follows that W(p) has a unique root s in (0, 1) and
W'{p} < 0. Obviously N(p) > 0. These facts and CLT have the following
implication.

Corollary 1. For the four-operator linear model with ® = 8¢ and ey >0
fori = j,

lim lim Py((p, — )07 = 2) = &(z/0)
=0 n—m

where & is the normal distribulion with mean 0 and variance 1, p is the root in

0, 1) of Wip) = 0, " = N{p}/—2W'(p), and N and W are defined in (1.

Tt can he shown that p is the expected operator approximation to lim, ..
Elp,] [Bush and Mosteller, 1955]. Thus Coroliary 1 provides a justification
for expected operator approximation when learning rates are small,

2.2 Families of Medels Thal Predict Approximate Probability Matching for
Small Learning Rales

Throughout this subsection and the next it is implicitly assumed that
01 = 0z = 04,7 = L, 2, and thatl the outcomes 0, and O, zre complimentary
in the sense that 0, has the same reinforcing effect on A, as 0, has on 4, .
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Nerman and Yellott [1966] defined sbstract families of learning models
indexed by a learning rate parameter ¢ by means of their axioms F1 — F4,
Their paper should be eonsulted for statements of these axioms as well as the
definitions of the italicized terms, the function w, and the number g that ap-
pesr below. If such a family predicts approximaile probability maiching for
small learning rales or, equivalently [Norman and Yellott, 1966, Theorem 4]
approzimate marginal constancy for small learning rates, and if, in addition,
axiom ¥3 is strengthened to require that the function w be thrise continuously
differentiable on [0, 1] X {0, p), then it ean be shown that the hypotheses of
CLT are satisfied, and the following conclusion is obtained.

Corollary 2. If 0 < wyy, 7o < 1, then

lim lim P((p. ~ ¢ < 2) = 3(z/0),
-l neew
where £ = w3,/ {m12 + 7o) and
RSk )3
21 + 70

2.3 The Component Model with Fized Sample Size
The proportion p{'"*’ of stimulus elements conditioned to A, on trial »
in the N element component model with fixed sample size s [Estes, 1959]

satisfies the stochastic difference equation

o
e (£, 0).

d.
N
Posv —Pa =13 0 with prob.

k
— ' | |
((1 —jp”)N)( pﬁvj) (f} ™+ 8—;_3 ’*“)

(Y (=

RO e 25 Ee)

k 8 ]

where N 2 s = j, k= land (i) is to be interpreted as 01 7 > 4.

A simple computation shows that Vip, ¢) = ¥lom — (7 + m)p)s,
and & more complicated one yields

M(p, ) = ‘!’23{(“'21 — 20l — 3rn — 7)s — Dp(l —~ /(1 — )

et = o1+ 6= 0 TG E g 14 6 - 0 G2 2]
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where s 18 fixed and = 1/N is regarded as the learning rate parameter. The
process {p{Y™*'} is a finite Markov chain with only one ergodic class, and this
elass i3 aperiodic, so the distribution of p"’ converges as n — = to & dis-
tribution F,, (which is independent of the distribution of ). Obviously
Vip, ¥), M'7(p, ¢) and a,*(y) are OW); (8/30)V (p, 0) = s(my; — (ws+m2)p)
has the same sign as ma/{(rs + 712) — P, 80 p = w/{FTn + T1);
and (9*/9p )V {(p, 0) = —(wyn + mz)s < 0. Finally, it can be shown that

(°/09") M (p, 0) = 2p(t — p)(2(ms + mz) + 8 — 1) > 0,
so CLT is applicable and yields this result.
Corollary 3. If 0 < &y, mon < 1, then

lim lim Py,w{(p, — 0)N™? = 2) = &(z/0),

Nes psee

where p = mu/(Ta + ™) and
o = el — p)(1 + (s — }/2(xa + T12))-

3. A General Central Limit Theorem

Let S be a bounded set of positive real numbers having 0 as a limit point,
6 = sup 8, and J = [0, 8. Forevery 8¢ 8, let {pi” 12, be a stochastic process
(not necessarlly Markov) with state space contained in a elosed bounded
interval (e, b] = I. Suppose that there exist twice continuously differentiable
regl valued funetions ¥V and M on I X J such that, for every de Sandn = 1,
Es[]?nﬂ - P» l pni = V(pn y '9) a.]ld EB[(pn-!-l - pn}s [ puI = M(pu H 6) “’ith
probability 1. SBuppose also that (0°/a¢®)M (-, ) exists and is continuous
on I X J, and that (3°/3p® 30)V (-, Q) and (3%/9p 96" M (-, O} exist and are
continuous on J. Finally, assume that, for every ¢ £ S, the distribution fune-
tion of p!” converges to a distribution funetion Fyasn — «.

Central Limit Theorem. I
(D) Yip, 6) = O(6) and M(p, 8) = O(°) for eack p e I,
(@) a.8) = Eflpan — pal’1 = O(6°) uniformly in n, and
(#58) (3/80)V(a, 0) > 0, (8/36)V (b, 0) < 0, (8/96)V (-, 0) has a unique
rost pin (a, b), and

v = (8%dp a0)V (e, 0) < 0,

then m = (§°/382 )M (s, 0) = 0. Denole the normalized distribution F (6% +
g) by Gol). If m > 0 then limsy Go(z) = ®{x/e) for all =, where ® i3 the
siandard normal disiribution function and ¢° = m/—4v. If m = 0 then
limgan Galz) = 8olx) for & # 0, where 8(x) s the distribufion funclion with
all of its mass ot 0. :

Since, forevery 6 e Sand n = L, |V(pi? , &) = M**(p!" , 6) with proba-
bility 1, one might hape that the first equality in () could be dispensed with.
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No way of doing this has yet been found, and, at any rate, the development in
Section 2 suggests that the verification of (7) and (¢) will be a triviality in
most applications.

The following lemma is a basic component of the proof of CLT.

Lemma. Under hypotheses (1) and (iii) of CLT, [°. (p — p)* dFs(z) = O(8)
andm = 0. If m = 0 then
[ @~ o arie = o).
Proof of the Lemma. For 8 ¢ S,
Eol@ae — 8)°) = Eol((a — ) + @02 — 2]
= Eﬂ[(pa - ,0)2] + 2E'0[(pn — P)(anrl . ‘P.JI "‘I‘ Es[@n+l - pn)z]
= Eﬂ[(pﬂ - p)z} + 2Eﬂ[(p-n - P)V(Pn 1 9)] + EB[M(pn ¥ 6)]'

Letting n approach = and using the Helly-Bray lemma [Logve, 1963, p. 180]
we obtain :

b b
~2[ o~ Ve B ari) + [ M, 0 dP).

It followsfrom (7} that V(p, 0) = M(p, 0) = (8/88)M(p, 0) = 0 for

all p e I. Hence, expanding V(p, -) and M(p, -) around &, the former up to

terms of second order and the latter up to terms of third order, and then
expanding (8°/36°)M (-, 0) around p up to terms of first order we obtain

-2 fj (p — p)8B/36)V(p, 0) dFy(p)
=2 f: (p — oX6°/2)(@/368)V(p, ) dFs(p) + (F/2m

+ [ @720 ~ 00/op 08M G, 6) 8FA) + 00

where 0 < ¢* < @and p*is between p and p. But, by {¢1), (8/88)V (p,0)/(p — p)
< 0 when p e I, p = p. Since (3*/3p 38)V (e, 0) < 0 also, it follows that
there is some v > 0 such that (8/88)V{p, 0)/(p — p) < —v or —(3/20)
“V¥ip, 0)/{p — p) > v ior all p e I, where the quotient is defined by continuity
at p = p. Since

2 [ @ — - 0/s0 Ve, 0/ — 9l aRw)

= 0o(s [ 10— ol aP) + o/2m + 010D,
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and since f2 [p — p| dFy(p) = O(1}, we obtain [% (p — p) dF4(p) = O(6).
Therefore 2y [} (p — p)® dF.(p) = O8> + (8/2)m. From this it follows
thet m 2 0 and that, if m = 0, then 2 (p — p)® dF ,(p) = of*.  QED.

Proof of CLT. If m = 0 the lemma implies [°, 2* d@,(z) = 0{8""). From
this it follows that G, converges to &, , as claimed. We assume heneeforth that
m > 0 so that the quantity o* defined in the statement of the theorem is
positive,

For 6 e 8,

Eolexp [it{pain — )67
= Bolexp litlp. — p)67"*] exp [it{pos — pa)67"])

= Eilexp [di(p. — 0)§7 1B, {exp it(Pasa — 2)67%] | pa}}.
Now

Eotexp [ii@as — 2007) D) = 1 + it67*V(p, , 6)
— /267 Mip, , 0 + ([t /3) 67 Byl |pacs — al® | Pal

where || < 1 [Lobve, 1963, p. 199]. Therefore substituting this into the
previous equation, using (%), letting n — o, using the Helly-Bray lemma,
and cancelling the term on the left of the resulting equation and the firgt
term on the right we obtain

0= f b exp [fp — )67 Lite T Vip, 0) dFs(p)

= [ e it — D1 . 0 R + O ¢,

The change of variables z = (p — )6/ yields
0= f oxp (i2)ite ™2 V(82 + p, §) dG,y(x)

— f : exp (itz)(£/2) 67 M(6" %z + o, 6) dG(x) + O(t)° 6.

By {2} and the boundedness of the relevant third partial derivatives we have
the Taylor expansions
Vip, ) = 6p — 2)(@"/ap 30)V (o, 0) + O(p — p)Y) + O
and
Mp, 8 = (6°/2)@/96°)M(p, 0) + O(6° |p — o) + O(F*)
where O(6") and 0(5") are uniform in 9. Therefore
V("% + 5, 0) = 6% + 082 + O(F)
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and
M(B‘L/?m + o, 0 = (BE/Q)m + 0(95/2 ].’15]) + 0(93)

But the lemma implies that [Z, 2° d@,(z) = O(1) and [*, |z| dG.&) = G(1).
Thus we can write

0= fw exp (stx) il dGy(z)

~ [ e Graeram da) + 0004 + 1P,
Therefore
(@/d)ai) + o) = O + P)6)

where g, is the characteristic function of @, . The solution of this differential
equation for which ¢g,{0) = 1is

golf) = exp (——o-“t2/2}(1 -+ j;: exp (o8 /2B0(1 + §5)6') ds)-

Thus g.(t) — exp (—¢"1*/2) as 8 — 0. It follows that Golz) — ®lz/e) for all
zas -0 Q.ED.

It ia easy to verify that all of the normal convergence theorems discussed
in Norman [1966] follow from CLT. From the present vantage point, how-
ever, it can be seen that the hypotheses of some of these theorems are un-
necessarily strong, while others are completely superfluous. In the latter
category are assumptions (45} and (49) in Theorem 4. In the former class are
the important assumptions (10) of Theorem 1, (56) and (57) of Theorem 4,
and (70) of Theorem 5, which imply that

2} (@*/op 080)V(p,0) <0 foral pel.

This condition, in conjunction with (3/08)¥V(a, 0) > 0 and (3/90)V (b, 0) < 0,
implies hypothesis (%) of CLT above. The inequality (2) need not be satisfied
under the hypotheses of Corollaries 1 and 2. Consider, for instance, the case
treated by Corollary 1 under the additional assumption that ¢,; = ¢ = ¢
(i.e. 01; = 05; = 8,), § = 1, 2. The condition (2) can be shown to hold for all
s > 0and wa 2> O if ¢, = ¢, but to fail if ¢, ¢z and mp and m,y are suf-
ficiently small.
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