
IEOR E4004: Introduction to OR: Deterministic Models

1 Dynamic Programming

Following is a summary of the problems we discussed in class. (We do not include the discussion on the

“container” problem or the cannibals and missionaries problem because these were mostly “philosophical”

discussions.)

1.1 Matrix Multiplication

We wish to compute the matrix product

A1A2 . . . An−1An,

where Ai has ai rows and ai+1 columns. How can find this product while minimizing the number of

multiplications used?

To study this problem using dynamic programming, we let mij be the optimal number of multiplica-

tions to find the product AiAi+1 . . . Aj , for i < j. The DP recursion is easily seen to be:

mi,i+1 = aiai+1ai+2,

and

mi,j = min
k:i<k<j

{
mi,k + mk,j + aiak+1aj+1

}
,∀j > i + 1.

Alternatively, one can say:

mi,i = 0,

and

mi,j = min
k:i≤k≤j

{
mi,k + mk,j + aiak+1aj+1

}
,∀j > i.

We first find m(·) for all i and j for which j−i is 0, then for all i and j for which j−i is 1, etc. Observe

that the DP recursion is such that if (j − i) = k, then m(i, j) depends on m(·) values for those (i′, j′)

pairs for which j′ − i′ < k. (Thus our way of finding the m(·) will work.) We are of course interested in

m(1, n).

The algorithm runs in O(n3) time: we need to fill a table of size O(n2), each of which requires O(n)

time to fill.

1.2 Knapsack problem

We are given a knapsack with capacity W . We have n items labeled 1, 2, . . . , n− 1, n; item i has size si

and value vi. Any subset of items with total size ≤ W can be packed into the knapsack. Thus our goal is

to pack into the knapsack a subset of maximum value, among all possible subsets whose total size is at

most W . Assume all the data are non-negative integers. How does one identify a maximum value subset?

1



We let f(j, w) be the maximum value one can achieve in the knapsack problem with items {1, 2, . . . , j}
and with knapsack capacity w. We are interested in determining f(n, W ). It is easy to see that

f(j + 1, w) = max
{

f(j, w), vj+1 + f(j, w − sj+1)
}

.

(The second term exists only if w ≥ sj+1; otherwise it is taken to be zero.) To justify this, consider

the following argument. If we are given a knapsack problem with j + 1 items and knapsack capacity w,

an optimal packing will either exclude the last item or include it; in the former case, we are left with

a knapsack problem involving the first j items and knapsack capacity w, whereas in the latter case we

are left with a knapsack problem involving the first j items and knapsack capacity w− sj+1, but we also

pick up an additional value vj+1. We can now solve the recursion backwards: clearly f(1, w) is trivial to

determine, for all 0 ≤ w ≤ W ; using this and the recursion described above, we can determine f(2, w)

for all 0 ≤ w ≤ W , etc. There are n(W + 1) entries to find, each of which can be determined in O(1)

time; so the complexity of the DP algorithm we just described is O(nW ).

1.3 Shortest path problem

Given a graph G = (V,E), and given “distances” cij ≥ 0 on the edges, find a shortest path from a given

s ∈ V to all other nodes in V . Let ci,i = 0, for all i ∈ V . We also let ci,j = ∞ for all (i, j) 6∈ E, so that

we may now assume ci,j is defined for every i, j ∈ V . We considered two versions of the shortest path

problem: the one-to-many version in which we need to find a shortest path from s to every other node in

V ; and the many-to-many version in which we need to find a shortest path from any node to every other

node.

One-to-many. Let fk(j) be the shortest path length from s to j using at most k edges for k =

1, 2, . . . , n − 1. Observe that we are interested in determining fn−1(v) for each v ∈ V \ {s}. The DP

recursion is:

fk+1(j) = min
i∈V

{
fk(i) + cij

}
.

The justification is as follows: consider any path that takes you from s to j using at most k + 1 edges.

Let i be the node that this path visits just before it reaches j, that is, let (i, j) be the last edge of this

path. In that case, it is clear that the length of the “optimal” such path is fk(i) + cij . Since we do not

know what i is for the optimal path from s to j using at most k + 1 edges, we try all possible values of

i. We can compute the fk(·) starting from f1(·) (where it is trivial), and then using the recursion to find

f2(·), and then f3(·), etc. Since the shortest paths from s to any node j does not use more than n − 1

edges, it is enough to find fn−1(j) for all j ∈ V \ {s}. (What is the complexity of this procedure?)

Many-to-Many. One could solve the many-to-many problem by solving n independent one-to-many

problems, one for each element v ∈ V as a source. Here is another way. Let gk(i, j) be the shortest path

2



length from i to j using only a subset of {1, 2, . . . , k} as intermediate nodes. We maintain this quantity

for all pairs i, j ∈ V . The DP recursion is:

gk+1(i, j) = min
{

gk(i, j), gk(i, k + 1) + gk(k + 1, j)
}

.

The justification is as follows: the optimal path from i to j using only a subset of {1, 2, . . . , k, k + 1} as

intermediate nodes may or may not use node k+1 as an intermediate node. If the path does not use k+1

as an intermediate node, then the path only uses a subset of {1, 2, . . . , k} as intermediate nodes, and in

that case its length is gk(i, j) (by definition). If the path does use k + 1 as an intermediate node, then

the total cost of this path can be decomposed into two parts: the part that takes you from i to k + 1,

and the part that takes you from k + 1 to j; each of these paths can use only a subset of {1, 2, . . . , k}
as intermediate nodes, so the cost of the two parts are gk(i, k + 1) and gk(k + 1, j) respectively. Again,

g1(·) is trivial to compute; starting from this we can compute g2(·) using the DP recursion, then we can

find g3(·), etc. The solution to the problem is given by gn(i, j) for all i, j ∈ V . The complexity of this

procedure can be estimated as follows: there are O(n3) entries to be determined (n possible values of k,

and O(n) possible values of i and j each); each entry can be found by looking up three entries that are

already stored in the table, and so can be found in O(1) time.

1.4 Traveling salesman problem

In the traveling salesman problem, we are again given a complete directed graph with V being the set of

nodes of the graph, and with cij representing the cost of going from node i to node j for all i, j ∈ V, i 6= j.

The goal is to determine the minimum cost tour starting at node 1, visiting each node exactly once,

and returning to node 1. To solve this problem by dynamic programming, we maintain f(S, k), for each

S ⊂ V \ {1}, and for each k ∈ S. The interpretation of f(S, k) is that it is the cost of an optimal path

that starts at node 1, visits each node in S exactly once, and ends at node k. The DP recursion is easily

seen to be:

f(S, k) = min
j∈S\{k}

{f(S \ {k}, j) + cjk.

That this recursion is correct follows from making a simple observation: any path that starts at 1, ends

at k, and visits each node in S exactly once must have a last edge that goes from some node j to node

k; in that case, the length of this path is precisely f(S \ {k}, j) + cjk. Since we do not know the identity

of j, we try all possibilities. Once again we start with all subsets S with one element, in which case

determining f(·) is trivial; we then use this to determine f(·) on all subsets S with 2 elements, and then

all subsets with 3 elements, etc. The optimal tour-length can be determined by finding

min
k

f({2, 3, . . . , n− 1}, k) + ck1.

This is so because if any optimal tour visits some node last (before returning to node 1); if this node is

k, then its length is precisely f({2, 3, . . . , n− 1}, k) + ck1. Again, since we do not know k, we try all the

3



(n−1) possibilities. The complexity of the DP procedure here is easy to determine: the number of states

is O(n2n); each f(·) can be determined in O(n) time, so the overall complexity is O(n22n). While this is

expensive, it is substantially better than naively enumerating all tours (in this case we should list (n-1)!

tours.

1.5 A scheduling problem

As our last problem we turn to a very simple single machine scheduling problem. We have a single

machine, n jobs, with job i needing processing time pi on the machine. The completion time of job i is

denoted Ci and represents the epoch at which job i completes its processing on the machine. To illustrate

the definitions, suppose n = 3, and p1 = 1, p2 = 4, and p3 = 2. If the jobs are processed in the order

123, then C1 = 1, C2 = 5, and C3 = 7; if the jobs are processed in the order 231, then C2 = 4, C3 = 6,

and C1 = 7. Let fi(x) be the “cost” incurred by job i if its completion time is x. Suppose fi(x) is

nondecreasing in x for each i. (Note that different jobs could have different “cost” functions.) For each

sequence of jobs σ, let

g(σ) = max
j
{fj(Cσ

j )},

where Cσ
j is the completion time of job j in the schedule σ. The goal is to find a σ that minimizes g(σ).

To illustrate, suppose f1(x) = 5x2, f2(x) = 3x, and f3(x) = x + 3. Then for the sequence (123), the cost

of job 1 is f1(1) = 5, the cost of job 2 is f2(5) = 15, and the cost of job 3 is f3(7) = 10; thus,

g(123) = max{5, 15, 10} = 15.

For the sequence (231), the cost of jobs 1, 2, and 3 are 245, 12, and 9 respectively, which implies

g(231) = 245. To determine the “best” sequence, we can try the remaining four sequences, find g(·)
for each of them and find the best. This is doable for a problem with 3 jobs because there are only 6

sequences to try. In general for n jobs, there will be n! sequences to try, so this becomes computationally

expensive very soon. Can we do better using dynamic programming?

Observe that some job has to be scheduled last. This job finishes at time P :=
∑n

k=1 pk, so if job j

is scheduled last, then its cost is fj(P ), regardless of how the remaining jobs are sequenced. Let σ be

any sequence in which j appears as the last job. Then σ = (σ′, j), where σ′ is some ordering of the jobs

1, 2, . . . , j − 1, j + 1, . . . , n. It should be clear that

g(σ) = max{g(σ′), fj(P )}.

This is because the job with the largest cost in σ is some job other than j (in which case its cost is g(σ′)),

or it is job j (in which case its cost is fj(P )).

Now, let

j∗ ∈ arg max
j

fj(P ).

4



In other words, among all jobs j, let j∗ be a job that minimizes fj(P ). Consider the schedule obtained

by scheduling j∗ last; we are left with a problem involving (n− 1) jobs to which we apply the same rule

recursively. We claim that this schedule is optimal.

Let g∗(S) be the optimal cost of the scheduling problem when only the jobs in S are to be scheduled.

Then it is clear that:

g∗(S) ≥ g∗(S \ {j}), foranyj ∈ S (1)

and

g∗(S) ≥ min
j∈S

fj(
∑
k∈S

pk) (2)

The first inequality is true because if we have one job less to schedule we can only do better in an optimal

solution as all “costs” are nondecreasing in the completion times; the second inequality is true because

some job in S must have completion time
∑

k∈S pk, so its cost must be at least minj∈S fj(
∑

k∈S pk).

We are now ready to prove the optimality of our scheduling rule. If the number of jobs is 1, the rule is

trivially optimal. Suppose the rule is optimal whenever there are fewer than n jobs. Consider an instance

with n jobs. Let j∗ be scheduled last, and let σ′ be the schedule computed by the rule on the remaining

instance. By induction, σ′ is an optimal schedule for the problem in which all jobs are present except job

j∗. Also,

g(σ′, j∗) = max{g∗(σ′), f∗j (P )}.

But we know from (1) and (2) that each of the terms on the RHS is a lower bound on g(·) of an optimal

schedule. This completes the proof.

5


