
Review on playing to

1.Supervised learning of policy networks

Goal : predict whata master would do given a board state

method - P(a)s) (a
,
5) : training
dale

gredientascent

E. Reinforcement learning of policy network OlogP
Goa : make move that win games

method : start from pior return.

Plesmosimple i -> Zi outcome = 1/

·

Policy GradientTheorem ·

-> first order step to maximize

expected reward



MC TS

Reinforcent learning of value networks

value
-Predicts win or lose

, muchly!

· goal : make it very fast
does not need to be supersecurate

method : use network treived to play games

gorl : predict gave value
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skipping value networ

Monte-Carlo Tie Search (MCTS)

· Balance between exploration %exploitation !-
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how ?
- a= zrgmex(Q(s, a) + u(s, a))
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Generic MCTS
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Alpha 20

&-> fast rollout

-> trained network!

%
prediction of game value

Zu

Q( , 2) = <+(-x
Expand



40 three 48 CPUs O GPUs
-> for E() leaf

evaluation

40 threads 1202 CPUS 16 GPUs

"
methods requireceveral orders of magnitude more

computation than traditio herrtis)

· Alpha 80" many bans stronger then my over pravitran
"
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